Бимодульная модулярная арифметика

Материал из Модулярная арифметики
(Различия между версиями)
Перейти к: навигация, поиск
Строка 7: Строка 7:
 
= Кодовая конструкция проф. Д.А. Поспелова =
 
= Кодовая конструкция проф. Д.А. Поспелова =
  
Для того, чтобы сбалансировать выполнение модульных операций Д.А. Поспелов ввел представление исходных операндов в виде пар  <math>  <|x|_p, ind_w|x|_p> </math>>, где  <math> |x|_p </math> есть вычет <math> x </math> по модулю <math> p </math>  ,  <math>  i = ind_w|x|_p </math> - соответствующий вычету  <math> |x|_p </math> индекс, при этом условно считается, что вычету 0 соответствует специальный символ λ, который обладает свойством λ+i=i+λ для любого для любого индекса <math> 0<=i<=p-2 </math> . Таким образом, все операции поля выполняются над парами: если требуется найти сумму двух операндов по модулю <math> p </math>, то суммируются по модулю <math> p </math> первые компоненты пар; для формирования второй компоненты пары результата этот результат преобразуется в индекс путем выборки значения из таблицы индексов (рис.1). Если требуется найти произведение двух операндов по модулю <math> p </math>, то суммируются по модулю <math> p - 1 </math> вторые компоненты пар; для формирования первой компоненты пары результата этот результат преобразуется в антилогарифм (вычет) путем выборки значения из таблицы вычетов (рис.2):
+
Для того, чтобы сбалансировать выполнение модульных операций Д.А. Поспелов ввел представление исходных операндов в виде пар  <math>  <|x|_p, ind_w|x|_p> </math>>, где  <math> |x|_p </math> есть вычет <math> x </math> по модулю <math> p </math>  ,  <math>  i = ind_w|x|_p </math> - соответствующий вычету  <math> |x|_p </math> индекс, при этом условно считается, что вычету 0 соответствует специальный символ λ, который обладает свойством λ+i=i+λ для любого для любого индекса <math> 0\le i\le p-2 </math> . Таким образом, все операции поля выполняются над парами: если требуется найти сумму двух операндов по модулю <math> p </math>, то суммируются по модулю <math> p </math> первые компоненты пар; для формирования второй компоненты пары результата этот результат преобразуется в индекс путем выборки значения из таблицы индексов (рис.1). Если требуется найти произведение двух операндов по модулю <math> p </math>, то суммируются по модулю <math> p - 1 </math> вторые компоненты пар; для формирования первой компоненты пары результата этот результат преобразуется в антилогарифм (вычет) путем выборки значения из таблицы вычетов (рис.2):
  
  
Строка 18: Строка 18:
 
Таким образом, операции сложения и умножения сведены к операциям сложения по модулю <math> p </math> и модулю <math> p-1 </math>, соответственно, и одной табличной операции выбора второй компоненты пары результата. Такое решение позволяет сократить время выполнения мультипликативной операции на один такт табличной операции и площадь на хранение двух таблиц преобразования в индексы, размерность каждой таблицы <math>2(p-1)</math>. При этом, Д.А. Поспелов утверждает [1, стр. 296], что, несмотря на то, что логика операции умножения по модулю <math> p </math> стала более сложной, чем в обычной системе кода в остатках, выигрыш состоит в «однотипности оборудования для производства операций сложения и умножения». Данное утверждение справедливо в общем случае, когда сумматоры по модулям <math> p </math> и <math> (p-1) </math> проектируются по методу прямой логической реализации с использованием двоичных функциональных блоков. В этом случае суммирование по модулю <math> m </math> для двух операндов <math> x </math> и <math> y </math>, находящихся в диапазоне <math>{0, 1,\ldots, m-1}</math>, выполняется по следующей формуле:
 
Таким образом, операции сложения и умножения сведены к операциям сложения по модулю <math> p </math> и модулю <math> p-1 </math>, соответственно, и одной табличной операции выбора второй компоненты пары результата. Такое решение позволяет сократить время выполнения мультипликативной операции на один такт табличной операции и площадь на хранение двух таблиц преобразования в индексы, размерность каждой таблицы <math>2(p-1)</math>. При этом, Д.А. Поспелов утверждает [1, стр. 296], что, несмотря на то, что логика операции умножения по модулю <math> p </math> стала более сложной, чем в обычной системе кода в остатках, выигрыш состоит в «однотипности оборудования для производства операций сложения и умножения». Данное утверждение справедливо в общем случае, когда сумматоры по модулям <math> p </math> и <math> (p-1) </math> проектируются по методу прямой логической реализации с использованием двоичных функциональных блоков. В этом случае суммирование по модулю <math> m </math> для двух операндов <math> x </math> и <math> y </math>, находящихся в диапазоне <math>{0, 1,\ldots, m-1}</math>, выполняется по следующей формуле:
  
 
+
:<math>{|x+y|}_m = \begin{cases}
 +
  x+y, & \mbox{if } (x+y) < m ; \\
 +
  x+y-m,  & \mbox{if } (x+y) \ge m.
 +
\end{cases}
 +
</math>
 
= Модифицированная кодовая конструкция =
 
= Модифицированная кодовая конструкция =
  

Версия 16:35, 28 мая 2014

Аддитивный характер вычислений в кольце вычетов  Z_p порождает дополнительные расходы на выполнение арифметических операций. Это обусловлено тем, что результат выполненной операции может выйти за диапазон  Z_p , тогда требуется корректировка результата, т.е. взятие результата выполненной операции по модулю. Мультипликативная операция над остатками x, y mod p более трудоемка, поэтому наиболее эффективным способом избежать прямой реализации мультипликативной операции является переход к индексам вычетов по основанию первообразного корня, однозначно связанных с данным модулярным кодом.

В случае индексной арифметики операция «+» выполняется за один такт модульного суммирования, а операция «*» за такт модульного суммирования и два такта табличной операции.


Кодовая конструкция проф. Д.А. Поспелова

Для того, чтобы сбалансировать выполнение модульных операций Д.А. Поспелов ввел представление исходных операндов в виде пар   <|x|_p, ind_w|x|_p> >, где  |x|_p есть вычет  x по модулю  p ,   i = ind_w|x|_p - соответствующий вычету  |x|_p индекс, при этом условно считается, что вычету 0 соответствует специальный символ λ, который обладает свойством λ+i=i+λ для любого для любого индекса  0\le i\le p-2 . Таким образом, все операции поля выполняются над парами: если требуется найти сумму двух операндов по модулю  p , то суммируются по модулю  p первые компоненты пар; для формирования второй компоненты пары результата этот результат преобразуется в индекс путем выборки значения из таблицы индексов (рис.1). Если требуется найти произведение двух операндов по модулю  p , то суммируются по модулю  p - 1 вторые компоненты пар; для формирования первой компоненты пары результата этот результат преобразуется в антилогарифм (вычет) путем выборки значения из таблицы вычетов (рис.2):


Рис.1. Структурная схема операции сложения
Рис.2. Структурная схема операции умножения


Арифметику, построенную на парном представлении операндов, будем называть бимодульной арифметикой поля  GF(p). Таким образом, операции сложения и умножения сведены к операциям сложения по модулю  p и модулю  p-1 , соответственно, и одной табличной операции выбора второй компоненты пары результата. Такое решение позволяет сократить время выполнения мультипликативной операции на один такт табличной операции и площадь на хранение двух таблиц преобразования в индексы, размерность каждой таблицы 2(p-1). При этом, Д.А. Поспелов утверждает [1, стр. 296], что, несмотря на то, что логика операции умножения по модулю  p стала более сложной, чем в обычной системе кода в остатках, выигрыш состоит в «однотипности оборудования для производства операций сложения и умножения». Данное утверждение справедливо в общем случае, когда сумматоры по модулям  p и  (p-1) проектируются по методу прямой логической реализации с использованием двоичных функциональных блоков. В этом случае суммирование по модулю  m для двух операндов  x и  y , находящихся в диапазоне {0, 1,\ldots, m-1}, выполняется по следующей формуле:

{|x+y|}_m = \begin{cases}
  x+y, & \mbox{if } (x+y) < m ; \\
  x+y-m,  & \mbox{if } (x+y) \ge m. 
\end{cases}

Модифицированная кодовая конструкция

Ссылки

  • [1] Поспелов Д.А. Арифметические основы вычислительных машин дискретного действия. М.: Высш. шк., 1970.

Персональные инструменты
Пространства имён

Варианты
Действия
Навигация