Китайская теорема об остатках

Материал из Модулярная арифметики
Версия от 12:10, 2 сентября 2014; Isaeva (обсуждение | вклад)

(разн.) ← Предыдущая | Текущая версия (разн.) | Следующая → (разн.)
Перейти к: навигация, поиск

Китайская теорема об остатках формулируется следующим образом:

Теорема.

Пусть p_1, p_2, \ldots, p_k - попарно взаимно простые числа, большие 1, и пусть P = p_1 \cdot p_2 \cdot \ldots  \cdot p_k. Тогда существует единственное неотрицательное решение по модулю P следующей системы сравнений:

x \equiv a_1 \pmod{p_1},
x \equiv a_2 \pmod{p_2},
\ldots,
x \equiv a_k \pmod{p_k}.

Другими словами, отображение, которое каждому целому числу x, 0\le x <P, ставит в соответствие кортеж a_1, a_2, \ldots, a_k, где x \equiv a_i \pmod{p_i}, i = 1, \ldots k является биекцией кольца Z_P на декартово произведение Z_{p_1} \times Z_{p_2} \times \ldots \times Z_{p_k} колец Z_{p_1}, Z_{p_2}, \ldots, Z_{p_k}.

Т.е. соответствие между числами и кортежами является взаимно однозначным, кроме того, операции, выполняемые над числом a, можно эквивалентно выполнять над соответствующими элементами кортежами путём независимого выполнения операций над каждым компонентом:

если

a \Longleftrightarrow (a_1, \ldots, a_k),
b \Longleftrightarrow (b_1, \ldots, b_k),

то справедливо:

(a+b) \pmod{p} \Longleftrightarrow ( (a_1+b_1) \pmod{p_1}, (a_2+b_2) \pmod{p_2}, \ldots, (a_k+b_k) \pmod{p_k}),
(a-b) \pmod{p} \Longleftrightarrow ( (a_1-b_1) \pmod{p_1}, (a_2-b_2) \pmod{p_2}, \ldots, (a_k-b_k) \pmod{p_k}),
(a\cdot b) \pmod{p} \Longleftrightarrow ( (a_1\cdot b_1) \pmod{p_1}, (a_2\cdot b_2) \pmod{p_2}, \ldots, (a_k\cdot b_k) \pmod{p_k}).


Существует много различных доказательств китайской теоремы об остатках. Приведём конструктивное доказательство этой теоремы.


Персональные инструменты
Пространства имён

Варианты
Действия
Навигация