Перевод числа из СОК в обобщенную позиционную систему

Материал из Модулярная арифметики
(Различия между версиями)
Перейти к: навигация, поиск
Строка 95: Строка 95:
  
 
:<math>\tau_{3,4} = \left | \frac{1}{5} \right | \pmod 7 = 3</math>,
 
:<math>\tau_{3,4} = \left | \frac{1}{5} \right | \pmod 7 = 3</math>,
<math>\tau_{3,5} = \left | \frac{1}{5} \right | \pmod 11 = 9</math>,
+
\[ \left( \begin{array}{ccc}
 +
a & b & c \\
 +
d & e & f \\
 +
g & h & i \end{array} \right)\]\tau_{3,5} = \left | \frac{1}{5} \right | \pmod 11 = 9</math>,
  
  
 
:<math>\tau_{4,5} = \left | \frac{1}{7} \right | \pmod 11 = 8</math>.
 
:<math>\tau_{4,5} = \left | \frac{1}{7} \right | \pmod 11 = 8</math>.
 +
 +
 +
Для удобства запишем константы в виде матрицы:
 +
 +
 +
<math>\left( \begin{array}{ccccc} 0 & 2 & 3 & 4 & 6 \\ 0 & 0 & 2 & 5 & 4 \\ 0 & 0 & 0 & 3 & 9 \\0 & 0 & 0 & 0 & 8 \end{array} \right)</math>

Версия 11:46, 17 октября 2014

Рассмотрим метод определения величины числа связанный с переводом числа из системы остаточных классов в обобщенную позиционную систему (ОПС). Для этого выявим связь между представлением некоторого числа в этих двух системах.


Алгоритм перевода числа из СОК в обобщенную позиционную систему

Пусть СОК задается основаниями p_1, p_2, \ldots, p_n и A = ({\alpha}_1, {\alpha}_2, \ldots, {\alpha}_n) - число в этой системе. И пусть p_1, p_2, \ldots, p_n являются также основаниями ОПС, тогда число A можно представить в виде

A = a_n\cdot p_1\cdot p_2\cdot \ldots \cdot p_{n-1} + a_{n-1}\cdot p_1\cdot p_2\cdot \ldots \cdot p_{n-2} + \ldots + a_3\cdot p_1\cdot p_2 + a_2\cdot p_1 + a_1

где 0\le a_k<p_1\cdot p_2\cdot \ldots \cdot p_{k-1} – коэффициенты (цифры) ОПС.

Очевидно, что диапазоны чисел, представимых в СОК и ОПС совпадают, т.е. можно говорить о наличии взаимно однозначного соответствия между множеством представлений чисел в СОК и ОПС.

Предыдущее равенство можно переписать в следующем виде:

A = a_1 + p_1(a_2 + p_2(a_3 + \ldots +p_{n-2}(a_{n-1} + p_{n-1} a_n) \ldots )),

откуда следует, что цифры ОПС могут быть получены из соотношений:


a_1 = A - \left[ \frac{A}{p_1}\right] \cdot p_1 = A - A_1\cdot p_1, где A_1 = \left[ \frac{A}{p_1}\right],
a_2 = A_1 - \left[ \frac{A_1}{p_2}\right] \cdot p_2 = A_1 - A_2\cdot p_2, где A_2 = \left[ \frac{A_1}{p_2}\right],

\ldots

a_n = A_{n-1} - \left[ \frac{A_{n-1}}{p_n}\right] \cdot p_n = A_{n-1} - A_n\cdot p_n, где A_n = \left[ \frac{A_{n-1}}{p_n}\right].


Причем при определении цифр a_i по этим формулам все вычисления можно вести в СОК.

Действительно, из формул следует, что a_1 = {|A|}_{p_1}, т.е. a_1 - первая СОК цифра, или a_1 = {\alpha}_1. Для получения a_1 сперва представим A - a_1 в остаточном коде. Очевидно, что A - a_1 делится на p_1. Более того, p_1 взаимно просто со всеми другими модулями. Следовательно, для нахождения цифры a_2 может быть использована процедура деления без остатка:

a_2 = \left|\frac{A - a_1}{p_1}\right|_{p_2}.

Таким путем, с помощью вычитаний и делений в остаточной записи все цифры ОПС могут быть получены. При этом замечено, что

a_1 = |A|_{p_1}, a_2 = \left|\left[\frac{A}{p_1}\right]\right|_{p_2}, a_3 = \left|\left[\frac{A}{p_1\cdot p_2}\right]\right|_{p_3}

и, вообще, для  i > 1

a_i = \left|\left[\frac{A}{p_1\cdot p_2 \cdot \ldots \cdot p_{i-1}}\right]\right|_{p_i}.


Перевод, осуществляемый согласно описанному алгоритму,содержит всего 2 \cdot (n-1) остаточных арифметических операций вычитания и деления без остатка, где n – число модулей системы.

Модификация алгоритма перевода числа из СОК в обобщенную позиционную систему

Можно предложить некоторую модификацию алгоритма с заменой операции деления операцией умножения. Для этого предварительно вычисляется \frac{n\cdot (n-1)}{2} констант \tau_{k,j}, которые удовлетворяют условию

\tau_{k,j}\cdot p_k \equiv 1\pmod p_j, 1 \le k < j \le n.

Эти константы можно, например получить из расширенного алгоритма Евклида

\tau_{k,j}\cdot p_k + \gamma \cdot p_j = HOD (p_k, p_j) = 1.

Здесь следует заметить тот факт, что константы полностью определяются выбранной системой оснований, поэтому могут быть вычислены заранее и храниться в некоторой таблице.

Если константы \tau_{k,j} вычислены, то вычисление цифр a_i ОПС по модифицированному алгоритму может быть переписано в виде:

a_1 \equiv {\alpha}_1 \pmod p_1,
a_2 \equiv ({\alpha}_2 - {\alpha}_1) \cdot \tau_{1,2} \pmod p_2,
a_3 \equiv (({\alpha}_3 - {\alpha}_1) \cdot \tau_{1,3} - {\alpha}_2) \tau_{2,3} \pmod p_3,
\ldots
a_n \equiv (\ldots (({\alpha}_n - {\alpha}_1) \cdot \tau_{1,n} - {\alpha}_2) \tau_{2,n} - \ldots {\alpha}_{n-1} \cdot \tau_{n-1,n} \pmod p_n.

Константы \tau_{k,j} принято также записывать в виде

\tau_{k,j} = \left | \frac {1}{p_k} \right | \pmod p_j

и называть обратными элементами по умножению для чисел p_k по модулю p_j (multiplicative inverse).


Пример

Пусть дана система оснований p_1 = 2, p_2 = 3, p_3 = 5, p_4 = 7, p_5 = 11. Объем диапазона P = 2310. Переведем число A = (1,1,3,5,4) в ОПС.

Найдем сначала константы \tau_{k,j}:


\tau_{1,2} = \left | \frac{1}{2} \right | \pmod 3 = 2, \tau_{1,3} = \left | \frac{1}{2} \right | \pmod 5 = 3,

\tau_{1,4} = \left | \frac{1}{2} \right | \pmod 7 = 4, \tau_{1,5} = \left | \frac{1}{2} \right | \pmod 11 = 6,


\tau_{2,3} = \left | \frac{1}{3} \right | \pmod 5 = 2,

\tau_{2,4} = \left | \frac{1}{3} \right | \pmod 7 = 5, \tau_{2,5} = \left | \frac{1}{3} \right | \pmod 11 = 4,


\tau_{3,4} = \left | \frac{1}{5} \right | \pmod 7 = 3,

\[ \left( \begin{array}{ccc} a & b & c \\ d & e & f \\ g & h & i \end{array} \right)\]\tau_{3,5} = \left | \frac{1}{5} \right | \pmod 11 = 9</math>,


\tau_{4,5} = \left | \frac{1}{7} \right | \pmod 11 = 8.


Для удобства запишем константы в виде матрицы:


\left( \begin{array}{ccccc} 0 & 2 & 3 & 4 & 6 \\ 0 & 0 & 2 & 5 & 4 \\ 0 & 0 & 0 & 3 & 9 \\0 & 0 & 0 & 0 & 8 \end{array} \right)


Персональные инструменты
Пространства имён

Варианты
Действия
Навигация