Система остаточных классов

Материал из Модулярная арифметики
(Различия между версиями)
Перейти к: навигация, поиск
Строка 1: Строка 1:
 
'''Система остаточных классов (СОК)''' (от англ. [http://en.wikipedia.org/wiki/Residue_number_system Residue number system], другое название '''Модулярная арифметика''') - [http://ru.wikipedia.org/wiki/%D0%A1%D0%B8%D1%81%D1%82%D0%B5%D0%BC%D0%B0_%D1%81%D1%87%D0%B8%D1%81%D0%BB%D0%B5%D0%BD%D0%B8%D1%8F#.D0.9D.D0.B5.D0.BF.D0.BE.D0.B7.D0.B8.D1.86.D0.B8.D0.BE.D0.BD.D0.BD.D1.8B.D0.B5_.D1.81.D0.B8.D1.81.D1.82.D0.B5.D0.BC.D1.8B_.D1.81.D1.87.D0.B8.D1.81.D0.BB.D0.B5.D0.BD.D0.B8.D1.8F непозиционная система счисления]. Представление числа в системе остаточных классов основано на понятии [http://ru.wikipedia.org/wiki/%D0%A1%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D0%B5_%D0%BF%D0%BE_%D0%BC%D0%BE%D0%B4%D1%83%D0%BB%D1%8E вычета] и [http://ru.wikipedia.org/wiki/%D0%9A%D0%B8%D1%82%D0%B0%D0%B9%D1%81%D0%BA%D0%B0%D1%8F_%D1%82%D0%B5%D0%BE%D1%80%D0%B5%D0%BC%D0%B0_%D0%BE%D0%B1_%D0%BE%D1%81%D1%82%D0%B0%D1%82%D0%BA%D0%B0%D1%85 китайской теореме об остатках]. СОК определяется набором [http://ru.wikipedia.org/wiki/%D0%92%D0%B7%D0%B0%D0%B8%D0%BC%D0%BD%D0%BE_%D0%BF%D1%80%D0%BE%D1%81%D1%82%D1%8B%D0%B5_%D1%87%D0%B8%D1%81%D0%BB%D0%B0 взаимно простых] ''модулей'' <math>(m_1, m_2, \dots, m_n)</math> с произведением <math>M=m_1\cdot m_2\cdot \dots\cdot m_n</math> так, что каждому целому числу <math>x</math> из отрезка <math>[0,M-1]</math> ставится в соответствие набор вычетов <math>(x_1, x_2, \dots, x_n)</math>, где
 
'''Система остаточных классов (СОК)''' (от англ. [http://en.wikipedia.org/wiki/Residue_number_system Residue number system], другое название '''Модулярная арифметика''') - [http://ru.wikipedia.org/wiki/%D0%A1%D0%B8%D1%81%D1%82%D0%B5%D0%BC%D0%B0_%D1%81%D1%87%D0%B8%D1%81%D0%BB%D0%B5%D0%BD%D0%B8%D1%8F#.D0.9D.D0.B5.D0.BF.D0.BE.D0.B7.D0.B8.D1.86.D0.B8.D0.BE.D0.BD.D0.BD.D1.8B.D0.B5_.D1.81.D0.B8.D1.81.D1.82.D0.B5.D0.BC.D1.8B_.D1.81.D1.87.D0.B8.D1.81.D0.BB.D0.B5.D0.BD.D0.B8.D1.8F непозиционная система счисления]. Представление числа в системе остаточных классов основано на понятии [http://ru.wikipedia.org/wiki/%D0%A1%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D0%B5_%D0%BF%D0%BE_%D0%BC%D0%BE%D0%B4%D1%83%D0%BB%D1%8E вычета] и [http://ru.wikipedia.org/wiki/%D0%9A%D0%B8%D1%82%D0%B0%D0%B9%D1%81%D0%BA%D0%B0%D1%8F_%D1%82%D0%B5%D0%BE%D1%80%D0%B5%D0%BC%D0%B0_%D0%BE%D0%B1_%D0%BE%D1%81%D1%82%D0%B0%D1%82%D0%BA%D0%B0%D1%85 китайской теореме об остатках]. СОК определяется набором [http://ru.wikipedia.org/wiki/%D0%92%D0%B7%D0%B0%D0%B8%D0%BC%D0%BD%D0%BE_%D0%BF%D1%80%D0%BE%D1%81%D1%82%D1%8B%D0%B5_%D1%87%D0%B8%D1%81%D0%BB%D0%B0 взаимно простых] ''модулей'' <math>(m_1, m_2, \dots, m_n)</math> с произведением <math>M=m_1\cdot m_2\cdot \dots\cdot m_n</math> так, что каждому целому числу <math>x</math> из отрезка <math>[0,M-1]</math> ставится в соответствие набор вычетов <math>(x_1, x_2, \dots, x_n)</math>, где
: <math>x \equiv x_1 \pmod{m_1};</math>
+
: <math>x_1 \equiv x \pmod{m_1};</math>
: <math>x \equiv x_2 \pmod{m_2};</math>
+
: <math>x_2 \equiv x \pmod{m_2};</math>
 
: …
 
: …
: <math>x \equiv x_n \pmod{m_n}.</math>
+
: <math>x_n \equiv x \pmod{m_n}.</math>
 
При этом китайская теорема об остатках гарантирует однозначность представления для чисел из отрезка <math>[0,M-1]</math>.
 
При этом китайская теорема об остатках гарантирует однозначность представления для чисел из отрезка <math>[0,M-1]</math>.
  

Версия 10:29, 4 февраля 2013

Система остаточных классов (СОК) (от англ. Residue number system, другое название Модулярная арифметика) - непозиционная система счисления. Представление числа в системе остаточных классов основано на понятии вычета и китайской теореме об остатках. СОК определяется набором взаимно простых модулей (m_1, m_2, \dots, m_n) с произведением M=m_1\cdot m_2\cdot \dots\cdot m_n так, что каждому целому числу x из отрезка [0,M-1] ставится в соответствие набор вычетов (x_1, x_2, \dots, x_n), где

x_1 \equiv x \pmod{m_1};
x_2 \equiv x \pmod{m_2};
x_n \equiv x \pmod{m_n}.

При этом китайская теорема об остатках гарантирует однозначность представления для чисел из отрезка [0,M-1].

Содержание

Преимущества системы остаточных классов

  • В СОК арифметические операции (сложение, вычитание, умножение, деление) выполняются покомпонентно, если про результат известно, что он является целочисленным и также лежит в [0,M-1].

Недостатки системы остаточных классов

  • Возможность представления только ограниченного количества чисел.
  • Отсутствие эффективных алгоритмов для сравнения чисел, представленных в СОК. Сравнение обычно осуществляется через перевод аргументов из СОК в смешанную систему счисления по основаниям (m_1, m_1\cdot m_2, \dots, m_1\cdot m_2\cdot\dots\cdot m_{n-1}).
  • Сложные реализации алгоритмов перевода из позиционной системы счисления в СОК и обратно.

Применение системы остаточных классов

СОК широко используется в микроэлектронике в специализированных устройствах [ЦОС], где требуется:

  • контроль за ошибками, за счет введения дополнительных избыточных модулей
  • высокая скорость работы, которую обеспечивает параллельная реализация базовых арифметических операций

Основные определения

Система остаточных классов используется для представления больших чисел N, обеспечивая таким образом более эффективные вычисления. В основе данного представления лежит изоморфизм \mathbb{Z}/m_1\cdot\ldots\cdot m_n\mathbb{Z}\cong\mathbb{Z}/m_1\mathbb{Z}\times\ldots\times\mathbb{Z}/m_n\mathbb{Z} , который доставляет китайская теорема об остатках.

Системой остаточных классов называют произвольное конечное множество \{m_1,\ldots ,m_n\}\subset\mathbb{N}, такое что \gcd\limits_{i\ne j}(m_i,m_j)=1, где n\in\mathbb{N}. Пусть задана произвольная система остаточных классов \{m_1,\ldots ,m_n\} и положим, что M=\prod\limits_{i=1}^{n}m_i. Тогда в силу китайской теоремы об остатках имеем эпиморфизм колец \varphi: \mathbb{Z}\to\prod\limits_{i=1}^{n}\mathbb{Z}/m_i\mathbb{Z}, т.ч. \operatorname{Ker}\varphi=M\mathbb{Z}, который индуцирует канонический изоморфизм \mathbb{Z}/M\mathbb{Z}\cong\prod\limits_{i=1}^{n}\mathbb{Z}/m_i\mathbb{Z}.

Выполнение арифметических операций

С использованием системы остаточных классов можно выполнять основные арифметические операции.

Сложение и вычитание

Пусть A,B- произвольные натуральные числа. Положим, что A,B представляются в виде системы остаточных классов как (a_1,\ldots ,a_n) и (b_1,\ldots b_n) соответственно. Формально, \varphi^{-1}(a_1,\ldots ,a_n)=A, \varphi^{-1}(b_1,\ldots b_n)=B. В силу того, что \varphi- изоморфизм будем иметь \varphi^{-1}((a_1,\ldots ,a_n)+(b_1,\ldots b_n))=\varphi^{-1}(a_1,\ldots ,a_n)+\varphi^{-1}(b_1,\ldots b_n). Обозначим через C остаток A+B от деления на M. Тогда C представляется в виде системы остаточных классов как (a_1+b_1,\ldots ,a_n+b_n).

Умножение

D- остаток от деления A\cdot B на M. Тогда D представляется в виде системы остаточных классов как (a_1b_1,\ldots ,a_nb_n).

Деление

Деление A на B с использованием системы остаточных классов можно выполнять не всегда. Положим, что E- остаток AB^{-1} от деления на M. На языке теории колец это означает, что b_i,1\le i\le n обратим и b_i^{-1}- обратный. Тогда AB^{-1} представляется в виде (a_1b_1^{-1},\ldots ,a_nb_n^{-1}).

Факторизация полупростых чисел

Пусть X=Y\cdot Z- полупростое число. Рассмотрим систему остаточных классов p_i,\ldots, p_N, где p_ii-е простое число.


Литература

  1. Шаблон:Книга

Персональные инструменты
Пространства имён

Варианты
Действия
Навигация