Main

Материал из Модулярная арифметики
(Различия между версиями)
Перейти к: навигация, поиск
Строка 87: Строка 87:
  
 
== Результаты исследований ==
 
== Результаты исследований ==
 +
# 2013.08 - [[Комплексное исследование обратных преобразователей (4 метода)]]
 
# 2013.05 - [[Комплексное исследование умножителей в диапазоне 3 - 64 бит]]
 
# 2013.05 - [[Комплексное исследование умножителей в диапазоне 3 - 64 бит]]
 
# 2013.04 - [[Результаты синтеза двоичных умножителей (3 - 64 бит)]]
 
# 2013.04 - [[Результаты синтеза двоичных умножителей (3 - 64 бит)]]

Версия 15:13, 21 августа 2013

Генераторы Verilog (базовые операции)

Модулярные сумматоры

  1. Генератор Verilog для сумматора по модулю 2n-1 - реализация на базе двух сумматоров и мультиплексора (вариант Романа).
  2. Генератор Verilog для сумматора по модулю 2n-1 - полностью комбинационная реализация без мультиплексора (вариант Димы).
  3. Генератор Verilog для сумматора по произвольному модулю - реализация предлагающая оптимальный вариант.

Модулярные умножители

  1. Генератор Verilog для умножения по модулю (метод 1) - от 3 до 1000 по индексному методу (умножение заменено на сложение).
  2. Генератор Verilog для умножения по модулю (метод 2) - от 3 до 1000 по методу разности квадратов (X*Y = (1/4)*(X+Y)2 - (1/4)*(X-Y)2)
  3. Генератор Verilog для умножителя по модулю 2n+1 - для n от 3 до 43.
  4. Генератор Verilog для умножителя по модулю 2n-1 - для n от 3 до 43.
  5. Генератор Verilog для умножителя по модулю 2n - для n от 3 до 43.

Классические умножители (до 128 бит)

  1. Бинарный умножитель на базе модулярного базиса (2n-1, 2n, 2n+1)
  2. Бинарных умножитель на базе рекурсивной модулярного базиса (2n-1, 2n, 2n+1) - используется два иерархических уровня модулей вида (2n-1, 2n, 2n+1).
  3. Бинарный умножитель на базе модулярного базиса (2n-1, 2n+1, 2n+1-1, 2n+1+1) - используется перспективный набор из 4-х модулей.
  4. Бинарный умножитель на базе иерархического метода - используется метод "разделяй и властвуй" без использования модулярной арифметики.

Прямые модулярные преобразователи

  1. Модулярный базис (2n-1, 2n, 2n+1) - прямой преобразователь из позиционной системы счисления в систему остаточных классов (версия Романа).
  2. Модулярный базис (2n-1, 2n, 2n+1) - прямой преобразователь из позиционной системы счисления в систему остаточных классов (версия Димы).
  3. Модулярный базис (2n-1, 2n+1, 2n+1-1, 2n+1+1) - прямой преобразователь из позиционной системы счисления в систему остаточных классов.

Обратные модулярные преобразователи

  1. Генератор Verilog для обратного преобразователя из базиса вида (2n-1, 2n, 2n+1) - сверхбыстрый обратный преобразователь в позиционную систему.
  2. Генератор Verilog для обратного преобразователя из 4-х элементного базиса (2n-1, 2n+1, 2n+1-1, 2n+1+1) - обратный преобразователь в позиционную систему.
  3. Генератор Verilog обратного преобразователя для произвольных взаимнопростых модулей - универсальный обратный преобразователь в позиционную систему для произвольного числа модулей (комбинационная и конвейерная версии).
  4. Генератор Verilog конвеерного обратного преобразователя на базе полиадического кода - универсальный обратный преобразователь в позиционную систему для произвольного числа модулей.

Другое

  1. Генератор Verilog для модулярных операций по методу Квайна - генератор операций сложения и умножения, для малых модулей (от 3 до 15).
  2. Генератор Verilog для квадрата разности по модулю p - состоит из вычитателя и таблицы квадратов (LUT).
  3. Генератор Verilog для КИХ-фильтров (простейший метод) - конвейерная структура сделанная в лоб по формуле свертки.
  4. Генератор умножителя для конвейерной реализации модулярного FIR-фильтра
  5. Генератор Verilog для прямых и инверсных Теоретико Числовых БПФ - используется конвейерная структура Radix2SPDF.

SAD процессоры (поиск различия между двумя картинками)

  1. Генератор Verilog для реализации позиционного SAD процессора - поиск векторов компенсации движения в стандартном виде.
  2. Генератор Verilog для реализации модулярного SAD процессора - поиск векторов компенсации движения в модулярном базисе вида (2n-1, 2n, 2n+1).

Формулы и математика

  1. Генератор простых чисел Прота для реализации операции свёртки - по методу БПФ в конечном поле.
  2. Формула для обратного преобразователя для базиса вида (2n-1, 2n, 2n+1) - обратный преобразователь для спец. системы модулей из системы остаточных классов в позиционный код.
  3. Проверка формул обратного преобразователя для базиса вида (2n-1, 2n, 2n+1) - обратный преобразователь для спец. системы модулей из системы остаточных классов в позиционный код.
  4. Генератор базисов для SAD процессоров разной размерности - базисы специального вида и обычного.
  5. Рисовалка области значений комплексного вычета - вычет комплексного числа по комлексному переменному
  6. Проверка базиса и расчет его динамического диапазона
  7. Нахождение обратного элемента по модулю


Справочные материалы

Определения

Алгоритмы

Программы

Разное

Результаты исследований

  1. 2013.08 - Комплексное исследование обратных преобразователей (4 метода)
  2. 2013.05 - Комплексное исследование умножителей в диапазоне 3 - 64 бит
  3. 2013.04 - Результаты синтеза двоичных умножителей (3 - 64 бит)
  4. 2013.04 - Результаты синтеза прямых/обратных преобразователей на спец модулях вида 2^n-1, 2^n, 2^n+1 для Д.Д. до 128 бит.
  5. 2013.02 - Сравнение разных методов умножения по модулю - 2^n-1,индексный,по методу разности квадратов и позиционный.
  6. 2013.02 - Результат сравнения различных методов построения модулярных умножителей (индексный метод, разность квадратов, метод Espresso)
  7. 2013.02 - Результат сравнения модулярных сумматоров в стандартном исполнении и по методу Espresso
  8. 2013.01 - Результат сравнения модулярных сумматоров в стандартном исполнении и по методу Квайна
  9. 2012.12 - Результат сравнения SAD-процессоров модулярный vs позиционный (промежуточный отчет 12.2012)
  10. 2012.12 - Исследование позиционного умножения на нашей библиотеке
  11. 2012.12 - Сравнение разных методов умножения по модулю - сравнение позиционного, индексного умножителя и умножителя по методу разности квадратов
  12. 2012.12 - Сравнение разных методов сложения по модулю 2^n-1 (модуль вида 2n-1) - сравнение позиционного сумматора и двух вариантов реализации сумматора по модулю 2n-1 (Генератор 1, Генератор 2).

Временные и тестовые скрипты

  1. Список случайных простых чисел - для теста от 900 до 20000
  2. Таблица умножения по модулю - от 3 до 100

Персональные инструменты
Пространства имён

Варианты
Действия
Навигация