Введение в АЦП — различия между версиями
| Строка 3: | Строка 3: | ||
| В данной статье будут кратко рассмотрены основные виды АЦП, представляющие информацию в двоичном коде. И более подробно АЦП, которые представляют информацию в системе остаточных классов. | В данной статье будут кратко рассмотрены основные виды АЦП, представляющие информацию в двоичном коде. И более подробно АЦП, которые представляют информацию в системе остаточных классов. | ||
| − | + | = Виды АЦП = | |
| == Параллельный АЦП (Flash or parallel ADC) == | == Параллельный АЦП (Flash or parallel ADC) == | ||
| Строка 18: | Строка 18: | ||
| [[Изображение:flash_ADC.jpg]] | [[Изображение:flash_ADC.jpg]] | ||
| − | = Интерполяционный АЦП (Interpolating Flash ADC) = | + | === Интерполяционный АЦП (Interpolating Flash ADC) === | 
| Является логическим развитием параллельного АЦП и призван упростить аппаратное усложнение при повышении разрядности,а значит повысить общую эффективность преобразования. Основная идея состоит в использовании предусилителей в качестве линейных усилителей. На рисунке представлен 3-битный интерполяционный АЦП. | Является логическим развитием параллельного АЦП и призван упростить аппаратное усложнение при повышении разрядности,а значит повысить общую эффективность преобразования. Основная идея состоит в использовании предусилителей в качестве линейных усилителей. На рисунке представлен 3-битный интерполяционный АЦП. | ||
| Строка 24: | Строка 24: | ||
| [[Изображение:Interpolating_flash_ADC.jpg]] | [[Изображение:Interpolating_flash_ADC.jpg]] | ||
| − | = Двухступенчатый АЦП (Two-stage flash ADC) = | + | === Двухступенчатый АЦП (Two-stage flash ADC) === | 
| Ещё одно развитие параллельного АЦП. Наиболее популярная архитектура, обеспечивающая высокую скорость преобразования и среднее разрешение. | Ещё одно развитие параллельного АЦП. Наиболее популярная архитектура, обеспечивающая высокую скорость преобразования и среднее разрешение. | ||
Версия 14:43, 20 февраля 2013
АЦП - аналого-цифровой преобразователь(Analog to Digital, ADC), устройство, которое преобразует входной аналоговый сигнал в выходной цифровой сигнал представленный, преимущественно, в двоичном коде. Входным сигналом может быть практически любая физическая величина, но для определённости условимся, что входным сигналом является напряжение. Основными параметрами АЦП является разрядность выходного сигнала и скорость преобразования.
В данной статье будут кратко рассмотрены основные виды АЦП, представляющие информацию в двоичном коде. И более подробно АЦП, которые представляют информацию в системе остаточных классов.
Содержание
Виды АЦП
Параллельный АЦП (Flash or parallel ADC)
Параллельные АЦП имеют разрядность 6-8 бит при скорости до 1 GSPS (giga samples per seconds). Архитектура данного вида АЦП представленная на рисунке.
Принципе работы относительно прост. На каждый компаратор подаётся входной аналоговый сигнал и доля опорного напряжения. Сравнивая их друг с другом каждый отдельно взятый компаратор вырабатывает логическую 1 или 0 на своём выходе, которые поступают в приоритетный шифратор (priority encoder).
-  Достоинства:
- Простая архитектура и принцип работы.
- Высокая скорость работы.
 
-  Недостатки:
- Маленькая разрядность. При повышении разрядности потребляемая мощность и площадь на кристалле растут слишком быстро.
 
Интерполяционный АЦП (Interpolating Flash ADC)
Является логическим развитием параллельного АЦП и призван упростить аппаратное усложнение при повышении разрядности,а значит повысить общую эффективность преобразования. Основная идея состоит в использовании предусилителей в качестве линейных усилителей. На рисунке представлен 3-битный интерполяционный АЦП.
Двухступенчатый АЦП (Two-stage flash ADC)
Ещё одно развитие параллельного АЦП. Наиболее популярная архитектура, обеспечивающая высокую скорость преобразования и среднее разрешение. На первом шаге аналоговый сигнал подаётся на n-разрядный АЦП, который делает грубое преобразование и вырабатывает n старших битов кода(MSB - Most Significant Bit). Эта же информация попадает в ЦАП и преобразуется обратно в аналоговый вид, который затем вычитается из первоначального сигнала. Остаток преобразуется АЦП разрядности m и вырабатывается m младших битов (LSB, Lowest Significant Bit). В итоге получается цифровой сигнал разрядности P = n+m.
-  Достоинства:
- Уменьшение аппаратных затрат (30 компараторов в двухступенчатом АЦП против 255 в обычном для получения 8-разрядных чисел).
- Уменьшение потребления и входной ёмкости.
 
-  Недостатки:
- Более высокая задержка в сравнении с обычным параллельным АЦП.
- Необходимость применения ЦАП большей разрядности чем P.
 




