Описание КТО II — различия между версиями

Материал из Модулярная арифметики
Перейти к: навигация, поиск
(Новая страница: «== Китайская теорема об остатках "второй версии"== При детальном рассмотрении, то что в [1] …»)
 
(Китайская теорема об остатках "второй версии")
Строка 3: Строка 3:
 
При детальном рассмотрении, то что в [1] называется CRT II, по сути является ни чем иным, как обратным преобразователем на основе преобразования в полиадический код, в несколько видоизмененном виде. За основу взята стратегия devide and conquer (такая же стратегия используется в БПФ).
 
При детальном рассмотрении, то что в [1] называется CRT II, по сути является ни чем иным, как обратным преобразователем на основе преобразования в полиадический код, в несколько видоизмененном виде. За основу взята стратегия devide and conquer (такая же стратегия используется в БПФ).
 
Базисом КТО II является формула восстановления числа по двум остаткам <math>x_1, x_2</math>, по основаниям <math>m_1, m_2</math>:
 
Базисом КТО II является формула восстановления числа по двум остаткам <math>x_1, x_2</math>, по основаниям <math>m_1, m_2</math>:
<math>X=x_1+|x_2-x_1|</math>
+
<math>X=x_1+|x_2-x_1|_m_2</math>
  
  

Версия 11:14, 5 апреля 2013

Китайская теорема об остатках "второй версии"

При детальном рассмотрении, то что в [1] называется CRT II, по сути является ни чем иным, как обратным преобразователем на основе преобразования в полиадический код, в несколько видоизмененном виде. За основу взята стратегия devide and conquer (такая же стратегия используется в БПФ). Базисом КТО II является формула восстановления числа по двум остаткам x_1, x_2, по основаниям m_1, m_2: Невозможно разобрать выражение (Преобразование в PNG прошло с ошибкой — проверьте правильность установки latex и dvips (или dvips + gs + convert)): X=x_1+|x_2-x_1|_m_2







[1]Yuke Wang, “Residue-to-Binary Converters Based On New Chinese Remainder Theorems,” IEEE Transactions on Circuits and Systems – II: Analog and Digital Signal Processing, vol. 47, No. 3, pp.197–205, March 2000.