Свёртка (цифровая обработка сигналов) — различия между версиями
Turbo (обсуждение | вклад) |
Turbo (обсуждение | вклад) |
||
Строка 1: | Строка 1: | ||
'''Свёртка''' (англ. Convolution) — это базовая операция в задачах цифровой обработки сигналов. В дискретном случае различают два вида сверток: линейную и циклическую. | '''Свёртка''' (англ. Convolution) — это базовая операция в задачах цифровой обработки сигналов. В дискретном случае различают два вида сверток: линейную и циклическую. | ||
− | Пусть имеется два дискретных сигнала <math>a(n), n=0...N-1</math> и <math> b(n), n= | + | Пусть имеется два дискретных сигнала <math>a(n), n=0...N-1</math> и <math> b(n), n=0...M-1 </math>. В общем случае <math>N</math> и M отличаются. |
== Линейная свёртка == | == Линейная свёртка == |
Версия 09:03, 14 июля 2013
Свёртка (англ. Convolution) — это базовая операция в задачах цифровой обработки сигналов. В дискретном случае различают два вида сверток: линейную и циклическую.
Пусть имеется два дискретных сигнала и . В общем случае и M отличаются.
Содержание
Линейная свёртка
Линейной сверткой сигналов и называется дискретный сигнал вида: Невозможно разобрать выражение (лексическая ошибка): s(n)=a*b=∑_(m=0)^n▒〖a(m)∙b(n-m)〗, n=0…N+M-2
Для вычисления линейной свертки сигналы a(n)и b(n)сдвигают относительно друг друга почленно перемножают и складывают. При этом предполагается, что a(n)=0 при n<0 и n>N, и b(n)=0 при n<0 и n>M.
Циклическая свёртка
В циклической свертке предполагается, что дискретные сигналы и – периодические с одинаковым периодом N отсчетов. Тогда циклической сверткой сигналов a(n) и b(n) называется сигнал вида: s(n)=∑_(m=0)^(N-1)▒〖a(m)∙b(n-m)〗, n=0…N-1 Результат циклической свертки также имеет длину N отсчетов.
Вычисление линейной свертки через циклическую
Используя циклическую свертку можно рассчитать линейную свертку двух сигналов. Для этого необходимо каждый из сигналов a(n)и b(n) длительностью M и N отсчетов соответственно дополнить нулями до длины M+N-1. Вычисление линейной свертки через циклическую кажется нерациональным, однако на практике чаще бывает удобно вычислять именно циклическую свертку, благодаря так называемой теореме о свертке. Cуть теоремы о свертке: спектр циклической свертки есть произведение спектров сворачиваемых сигналов: S(k)=A(k)*B(k), где A(k) и B(k) - спектры сворачиваемых сигналов, S(k) - спектр циклической свертки двух сигналов. Где спектр есть ни что иное как Дискретное преобразование Фурье (ДПФ), для реализации которого можно использовать быстрые алгоритмы БПФ
Применение
- Линейная свертка используется для расчета FIR-фильтров в цифровой обработке сигналов.
- Циклическую свертку используют для вычисления линейной свертки в том случае, если теорема о свертке дает хороший результат.