Система остаточных классов — различия между версиями
Bundin (обсуждение | вклад) (→Основные определения) |
Bundin (обсуждение | вклад) |
||
Строка 1: | Строка 1: | ||
− | Система остаточных классов используется для представления больших чисел N, обеспечивая таким образом более эффективные вычисления. В основе данного представления лежит изоморфизм <math>\mathbb{Z}/m_1\cdot\ldots\cdot m_n\mathbb{Z}\cong\mathbb{Z}/m_1\times\ldots\times\mathbb{Z}/m_n</math> , который доставляет китайская теорема об остатках. | + | Система остаточных классов используется для представления больших чисел <math>N</math>, обеспечивая таким образом более эффективные вычисления. В основе данного представления лежит [http://ru.wikipedia.org/wiki/Изоморфизм= изоморфизм] <math>\mathbb{Z}/m_1\cdot\ldots\cdot m_n\mathbb{Z}\cong\mathbb{Z}/m_1\mathbb{Z}\times\ldots\times\mathbb{Z}/m_n\mathbb{Z}</math> , который доставляет [http://ru.wikipedia.org/wiki/Китайская_теорема_об_остатках= китайская теорема об остатках]. |
== Основные определения == | == Основные определения == |
Версия 09:59, 28 января 2013
Система остаточных классов используется для представления больших чисел , обеспечивая таким образом более эффективные вычисления. В основе данного представления лежит изоморфизм
, который доставляет китайская теорема об остатках.
Содержание
Основные определения
Системой остаточных классов называют произвольное конечное множество , такое что
, где
. Пусть задана произвольная система остаточных классов
и положим, что
. Тогда в силу китайской теоремы об остатках имеем эпиморфизм колец
, т.ч.
, который индуцирует канонический изоморфизм
.
Выполнение арифметических операций
С использованием системы остаточных классов можно выполнять основные арифметические операции.
Сложение и вычитание
Пусть - произвольные натуральные числа. Положим, что
представляются в виде системы остаточных классов как
и
соответственно. Формально,
. В силу того, что
- изоморфизм будем иметь
. Обозначим через
остаток
от деления на
. Тогда
представляется в виде системы остаточных классов как
.
Умножение
- остаток от деления
на
. Тогда
представляется в виде системы остаточных классов как
.
Деление
Деление на
с использованием системы остаточных классов можно выполнять не всегда. Положим, что
- остаток
от деления на
. На языке теории колец это означает, что
обратим и
- обратный. Тогда
представляется в виде
.
Факторизация полупростых чисел
Пусть - полупростое число. Рассмотрим систему остаточных классов
, где
—
-е простое число.