Система остаточных классов — различия между версиями
Turbo (обсуждение | вклад) |
Turbo (обсуждение | вклад) |
||
Строка 1: | Строка 1: | ||
− | '''Система остаточных классов (СОК)''' (от англ. [http://en.wikipedia.org/wiki/Residue_number_system Residue number system], другое название '''Модулярная арифметика''') - [http://ru.wikipedia.org/wiki/%D0%A1%D0%B8%D1%81%D1%82%D0%B5%D0%BC%D0%B0_%D1%81%D1%87%D0%B8%D1%81%D0%BB%D0%B5%D0%BD%D0%B8%D1%8F#.D0.9D.D0.B5.D0.BF.D0.BE.D0.B7.D0.B8.D1.86.D0.B8.D0.BE.D0.BD.D0.BD.D1.8B.D0.B5_.D1.81.D0.B8.D1.81.D1.82.D0.B5.D0.BC.D1.8B_.D1.81.D1.87.D0.B8.D1.81.D0.BB.D0.B5.D0.BD.D0.B8.D1.8F непозиционная система счисления]. Представление числа в системе остаточных классов основано на понятии [http://ru.wikipedia.org/wiki/%D0%A1%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D0%B5_%D0%BF%D0%BE_%D0%BC%D0%BE%D0%B4%D1%83%D0%BB%D1%8E вычета] и [http://ru.wikipedia.org/wiki/%D0%9A%D0%B8%D1%82%D0%B0%D0%B9%D1%81%D0%BA%D0%B0%D1%8F_%D1%82%D0%B5%D0%BE%D1%80%D0%B5%D0%BC%D0%B0_%D0%BE%D0%B1_%D0%BE%D1%81%D1%82%D0%B0%D1%82%D0%BA%D0%B0%D1%85 | + | '''Система остаточных классов (СОК)''' (от англ. [http://en.wikipedia.org/wiki/Residue_number_system Residue number system], другое название '''Модулярная арифметика''') - [http://ru.wikipedia.org/wiki/%D0%A1%D0%B8%D1%81%D1%82%D0%B5%D0%BC%D0%B0_%D1%81%D1%87%D0%B8%D1%81%D0%BB%D0%B5%D0%BD%D0%B8%D1%8F#.D0.9D.D0.B5.D0.BF.D0.BE.D0.B7.D0.B8.D1.86.D0.B8.D0.BE.D0.BD.D0.BD.D1.8B.D0.B5_.D1.81.D0.B8.D1.81.D1.82.D0.B5.D0.BC.D1.8B_.D1.81.D1.87.D0.B8.D1.81.D0.BB.D0.B5.D0.BD.D0.B8.D1.8F непозиционная система счисления]. Представление числа в системе остаточных классов основано на понятии [http://ru.wikipedia.org/wiki/%D0%A1%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D0%B5_%D0%BF%D0%BE_%D0%BC%D0%BE%D0%B4%D1%83%D0%BB%D1%8E вычета] и [http://ru.wikipedia.org/wiki/%D0%9A%D0%B8%D1%82%D0%B0%D0%B9%D1%81%D0%BA%D0%B0%D1%8F_%D1%82%D0%B5%D0%BE%D1%80%D0%B5%D0%BC%D0%B0_%D0%BE%D0%B1_%D0%BE%D1%81%D1%82%D0%B0%D1%82%D0%BA%D0%B0%D1%85 китайской теореме об остатках]. СОК определяется набором взаимно простых ''модулей'' <math>(m_1, m_2, \dots, m_n)</math> с произведением <math>M=m_1\cdot m_2\cdot \dots\cdot m_n</math> так, что каждому целому числу <math>x</math> из отрезка <math>[0,M-1]</math> ставится в соответствие набор вычетов <math>(x_1, x_2, \dots, x_n)</math>, где |
: <math>x \equiv x_1 \pmod{m_1};</math> | : <math>x \equiv x_1 \pmod{m_1};</math> | ||
: <math>x \equiv x_2 \pmod{m_2};</math> | : <math>x \equiv x_2 \pmod{m_2};</math> |
Версия 12:50, 30 января 2013
Система остаточных классов (СОК) (от англ. Residue number system, другое название Модулярная арифметика) - непозиционная система счисления. Представление числа в системе остаточных классов основано на понятии вычета и китайской теореме об остатках. СОК определяется набором взаимно простых модулей с произведением
так, что каждому целому числу
из отрезка
ставится в соответствие набор вычетов
, где
-
-
- …
-
При этом китайская теорема об остатках гарантирует однозначность представления для чисел из отрезка .
Содержание
Преимущества СОК
В СОК арифметические операции (сложение, вычитание, умножение, деление) выполняются покомпонентно, если про результат известно, что он является целочисленным и также лежит в .
Недостатки СОК
Недостатками СОК является возможность представления только ограниченного количества чисел, а также отсутствие эффективных алгоритмов для сравнения чисел, представленых в СОК. Сравнение обычно осуществляется через перевод аргументов из СОК в смешанную систему счисления по основаниям .
Основные определения
Система остаточных классов используется для представления больших чисел , обеспечивая таким образом более эффективные вычисления. В основе данного представления лежит изоморфизм
, который доставляет китайская теорема об остатках.
Системой остаточных классов называют произвольное конечное множество , такое что
, где
. Пусть задана произвольная система остаточных классов
и положим, что
. Тогда в силу китайской теоремы об остатках имеем эпиморфизм колец
, т.ч.
, который индуцирует канонический изоморфизм
.
Выполнение арифметических операций
С использованием системы остаточных классов можно выполнять основные арифметические операции.
Сложение и вычитание
Пусть - произвольные натуральные числа. Положим, что
представляются в виде системы остаточных классов как
и
соответственно. Формально,
. В силу того, что
- изоморфизм будем иметь
. Обозначим через
остаток
от деления на
. Тогда
представляется в виде системы остаточных классов как
.
Умножение
- остаток от деления
на
. Тогда
представляется в виде системы остаточных классов как
.
Деление
Деление на
с использованием системы остаточных классов можно выполнять не всегда. Положим, что
- остаток
от деления на
. На языке теории колец это означает, что
обратим и
- обратный. Тогда
представляется в виде
.
Факторизация полупростых чисел
Пусть - полупростое число. Рассмотрим систему остаточных классов
, где
—
-е простое число.