Китайская теорема об остатках — различия между версиями
Isaeva (обсуждение | вклад) |
Isaeva (обсуждение | вклад) |
||
Строка 38: | Строка 38: | ||
Систему (*) можно решить так: | Систему (*) можно решить так: | ||
− | (1) Для <math>i=1,\ldots, k</math> обозначим < | + | (1) Для <math>i=1,\ldots, k</math> обозначим <math>z_i=p/p_i=p_1\cdot p_2\cdot\ldots\cdot p_{i-1}\cdot p_{i+1}\cdot \ldots\cdot p_k</math>. |
− | (2) Для <math>i=1,\ldots, k</math> обозначим < | + | (2) Для <math>i=1,\ldots, k</math> обозначим <math>y_i=z_{i}^{-1} \pmod{p_i}</math>. (Заметим, что это всегда можно сделать, поскольку <math>(z_i, p_i)=1</math>. |
(3) Решением системы является число <math>x=a_1\cdot y_1\cdot z_1 + \ldots +a_k\cdot y_k\cdot z_k=1</math>. | (3) Решением системы является число <math>x=a_1\cdot y_1\cdot z_1 + \ldots +a_k\cdot y_k\cdot z_k=1</math>. |
Версия 11:47, 11 сентября 2014
Китайская теорема об остатках формулируется следующим образом:
Теорема.
Пусть - попарно взаимно простые числа, большие 1, и пусть . Тогда существует единственное неотрицательное решение по модулю следующей системы сравнений:
- ,
- , (*)
- ,
- .
Другими словами, отображение, которое каждому целому числу , , ставит в соответствие кортеж , где является биекцией кольца на декартово произведение колец .
Т.е. соответствие между числами и кортежами является взаимно однозначным, кроме того, операции, выполняемые над числом , можно эквивалентно выполнять над соответствующими элементами кортежами путём независимого выполнения операций над каждым компонентом:
если
- ,
- ,
то справедливо:
- ,
- ,
- .
Существует много различных доказательств китайской теоремы об остатках. Приведём конструктивное доказательство этой теоремы.
Доказательство существования.
Доказательство 1.
Систему (*) можно решить так:
(1) Для обозначим .
(2) Для обозначим . (Заметим, что это всегда можно сделать, поскольку .
(3) Решением системы является число .
Действительно, рассмотрим выражение для и вычислим, например, . Заметим, что при (это видно из выражения (1) для ). Таким образом, вычисляя , получаем . Но из определения </math>y_i</math> (2) следует, что , так что получаем . То же самое верно для других значений .
Существование решения доказано.
Доказательство 2.
Найдём число , удовлетворяющее одновременно всем сравнениям, указанным в теореме. Систему сравнений будем решать присоединением на каждом шаге нового сравнения. Первое сравнение справедливо для всякого целого числа вида
, где - произвольное целое число.
Для нахождения подставим значение во второе сравнение системы, после чего получим , откуда ,
где - обратный мультипликативный элемент к по модулю . Такой элемент существует, так как .
Найденное таким образом можно записать в виде
для некоторого целого числа .
Подставим значение в выражение .
Теперь первые два сравнения могут быть заменены на одно .
Применим теперь описанную процедуру к полученному сравнению и к одному из оставшихся сравнений исходной системы. Повторяя этот процесс раз, мы в конечном итоге найдём число , удовлетворяющее всем сравнениям исходной системы.
Существование решения доказано.
Доказательство единственности.
Докажем единственность решения. Воспользуемся методом от противного. Предположим, что существует другое решение исходной системы.
Тогда
для всех .
Вычитая почленно из первого сравнения второе, получим истинное сравнение , откуда следует, что для всех делится нацело на . Но тогда делится нацело на ,следовательно, , так как .
Теорема доказана.