Теорема о делении с остатком. Алгоритм Евклида
Материал из Модулярная арифметики
Версия от 10:07, 10 декабря 2014; Isaeva (обсуждение | вклад)
Пример
Пусть модуль .
Тогда имеем шесть классов разбиения множества целых чисел по модулю 6:
- ;
- ;
- ;
- ;
- ;
- ,
где через обозначен остаток от деления целого числа на 6.
Напомним теорему о делении с остатком:
Теорема о делении с остатком
Для любых целых и , , существует единственный набор целых чисел и , что и , где — модуль числа .
Легко доказывается, что для любых целых чисел и , деление с остатком возможно и числа и определяются однозначно. В нашем примере полная система наименьших неотрицательных вычетов есть множество ; полная система наименьших положительных вычетов – множество ; полная система наименьших по абсолютной величине вычетов – множество ; приведённая система вычетов – множество , так как ; фактор-множество .