Специальные системы модулей
Содержание
3-элементные системы
{2n-1, 2n, 2n+1}
{2n-1, 2n, 2n+1} - наиболее часто встречающийся набор специальных модулей. Преимущества: легкость реализаций сумматоров, умножителей и немодульных операций. Система отлично изучена и часто используется.
{2n-1, 2n, 2n+1}
Общий случай предыдущей системы. Оличается легкостью создания обратных преобразователей.
{2n-1, 2n, 2n-1-1}
Система позволяет избежать сложных операций по модулю вида 2n+1, но сокращает динамический диапазон.
- Residue-to-binary arithmetic converter for the moduli set (2< sup> k</sup>, 2< sup> k</sup>-1, 2< sup> k-1</sup>-1)
4-элементные системы
{2n-1, 2n, 2n+1, 2n+1-1}
- Efficient reverse converters for the four-moduli sets $\{2^{n} - 1, 2^{n}, 2^{n} + 1, 2^{n + 1} - 1\}$ and $\{2^{n} - 1, 2^{n}, 2^{n} + 1, 2^{n-1} - 1\}$
{2n-1, 2n, 2n+1, 2n-1-1}
- Efficient reverse converters for the four-moduli sets $\{2^{n} - 1, 2^{n}, 2^{n} + 1, 2^{n + 1} - 1\}$ and $\{2^{n} - 1, 2^{n}, 2^{n} + 1, 2^{n-1} - 1\}$
{2n-1, 2n, 2n+1, 22n+1}
- An efficient reverse converter for the 4-moduli set $\{2^{n} - 1, 2^{n}, 2^{n} + 1, 2^{2n} + 1\}$ based on the new chinese remainder theorem
{2n-1, 2n, 2n+1, 2n-1+1}
Модули взаимнопросты для n = 2k + 1, k = 1, 2, 3...
{2n+2+3, 2n+1+1, 2n+1, 2}
Модули взаимнопросты для всех n
5-элементные системы
{2n-1, 2n, 2n+1, 2n+1-1, 2n-1-1}
Работает для четных n. Динамический диапазон 5n-1 бит.
- A Residue-to-Binary Converter for a New Five-Moduli Set
Удобные простые числа
Близкие к степени 2
2n-1: 3 (22-1) 7 (23-1) 31 (25-1) 127 (27-1) 8191 (213-1) 131071 (217-1)
2n+1: 5 (22+1) 17 (24+1) 257 (28+1) 65537 (216+1)
2n-3: 13 (24-3) 29 (25-3) 61 (26-3) 509 (29-3) 1021 (210-3) 4093 (212-3) 16381 (214-3)
2n+3: 11 (23+3) 19 (24+3) 67 (26+3) 131 (27+3) 4099 (212+3) 32771 (215+3) 65539 (216+3) 262147 (218+3)
32-битная система
64-битная система
- 17*31*127*257*511*512*513*8191 = 18910047147635040768 > 2^64
- 5*7*11*13*17*19*29*31*61*67*127*131*257 = 25396804364038562455 > 2^64