Китайская теорема об остатках
Китайская теорема об остатках формулируется следующим образом:
Теорема.
Пусть
- попарно взаимно простые числа, большие 1, и пусть
. Тогда существует единственное неотрицательное решение по модулю
следующей системы сравнений:
-
,
-
,
-
,
-
.
Другими словами, отображение, которое каждому целому числу
,
, ставит в соответствие кортеж
, где
является биекцией кольца
на декартово произведение
колец
.
Т.е. соответствие между числами и кортежами является взаимно однозначным, кроме того, операции, выполняемые над числом
, можно эквивалентно выполнять над соответствующими элементами кортежами путём независимого выполнения операций над каждым компонентом:
если
,
,
то справедливо:
-
,
-
,
-
.
Существует много различных доказательств китайской теоремы об остатках. Приведём конструктивное доказательство этой теоремы.
Доказательство.
Найдём число
, удовлетворяющее одновременно всем сравнениям, указанным в теореме. Систему сравнений будем решать присоединением на каждом шаге нового сравнения. Первое сравнение справедливо для всякого целого числа
вида
, где
- произвольное целое число.
Для нахождения
подставим значение
во второе сравнение системы,
после чего получим
,
откуда
,
где
- обратный мультипликативный элемент к
по модулю
.
Такой элемент существует, так как
.
Найденное таким образом
можно записать в виде
для некоторого целого числа
.
Подставим значение
в выражение
.
Теперь первые два сравнения могут быть заменены на одно
.
Применим теперь описанную процедуру к полученному сравнению и к одному из оставшихся сравнений исходной системы. Повторяя этот процесс Невозможно разобрать выражение (лексическая ошибка): (k–1)
раз, мы в конечном итоге найдём число, удовлетворяющее всем сравнениям исходной системы.
Докажем единственность решения. Воспользуемся методом от противного. Предположим, что существует другое решение
исходной системы. Тогда