Полиадический код
Содержание
Введение
Полиадический код (или система счисления со смешанным основанием от англ. associated mixed radix system (AMRS))
Любое число в системе остаточных классов может быть представленно в виде полиадического кода
где
- для и
Полиадический код используется для:
- Сравнения чисел
- Перевода чисел из системы остаточных классов в обычную позиционную систему счисления
Обратное преобразование
Обратное преобразование на базе полиадического кода, базируется на идее, что любое число X может быть представлено в системе взаимно простых чисел , как [1]:
- , где
- =>
- =>
- ...
Для использования этого метода требуются константы вида . Можно также заметить, что начинать вычисление можно, как только появилось значение . На основе этого метода можно строить конвейерные преобразователи.
Конвейерный преобразователь в полиадический код
Используя формулы выше можно нарисовать схему конвейерного преобразователя. В данном случае мы используем модулярный базис из 4 элементов:
- ROMij - это таблица выполняющая следующее преобразование . Для больших значений модулей таблица может быть заменена на последовательный набор арифметических операций (вычитание, умножение на константу и взятие модуля)
- LATCH - элемент памяти сохраняющий значение до следующего такта
- На преобразование модулярного представления в полиадический код требуется N-1 ступеней конвейера.
Обратный конвейерный преобразователь на базе полиадического кода
Этот преобразователь используется для восстановления числа из модулярного кода, заданного набором остатков .
- ROMij - это таблица выполняющая следующее преобразование . Для больших значений модулей таблица может быть заменена на последовательный набор арифметических операций (вычитание, умножение на константу и взятие модуля)
- LATCH - элемент памяти сохраняющий значение до следующего такта
- SUM - обычный сумматор
- На преобразование модулярного представления в позиционный вид требуется N ступеней конвейера.
- В отличие от преобразования в полиадический код, данный преобразователь получается более громоздким из-за более сложной структуры ROMij и наличия сумматоров, битовый размер которых растет в нижней части конвейера.
Коррекция ошибок на базе полиадического кода
Пусть задан набор модулей , где . Из них первые два являются информационными, а последние два - проверочными.
Ссылки
- [1] M. A. Soderstrand, W. K. Jenkins, G. A. Jullien and F. J. Taylor. 1986. Residue Number System Arithmetic: Modern Applications in Digital Signal Processing, IEEE Press, New York.
- [2] Патент "Efficient structure for computing mixed-radix projections from residue number systems"