Перевод числа из СОК в обобщенную позиционную систему

Материал из Модулярная арифметики
Перейти к: навигация, поиск

Рассмотрим метод определения величины числа связанный с переводом числа из системы остаточных классов в обобщенную позиционную систему (ОПС). Для этого выявим связь между представлением некоторого числа в этих двух системах.

Пусть СОК задается основаниями p_1, p_2, \ldots, p_n и A = ({\alpha}_1, {\alpha}_2, \ldots, {\alpha}_n) - число в этой системе. И пусть p_1, p_2, \ldots, p_n являются также основаниями ОПС, тогда число A можно представить в виде

A = a_n\cdot p_1\cdot p_2\cdot \ldots \cdot p_{n-1} + a_{n-1}\cdot p_1\cdot p_2\cdot \ldots \cdot p_{n-2} + \ldots + a_3\cdot p_1\cdot p_2 + a_2\cdot p_1 + a_1

где 0\le a_k<p_1\cdot p_2\cdot \ldots \cdot p_{k-1} – коэффициенты (цифры) ОПС.

Очевидно, что диапазоны чисел, представимых в СОК и ОПС совпадают, т.е. можно говорить о наличии взаимно однозначного соответствия между множеством представлений чисел в СОК и ОПС.

Предыдущее равенство можно переписать в следующем виде:

A = a_1 + p_1(a_2 + p_2(a_3 + \ldots +p_{n-2}(a_{n-1} + p_{n-1} a_n) \ldots )),

откуда следует, что цифры ОПС могут быть получены из соотношений:


a_1 = A - \left[ \frac{A}{p_1}\right] \cdot p_1 = A - A_1\cdot p_1, где A_1 = \left[ \frac{A}{p_1}\right],
a_2 = A_1 - \left[ \frac{A_1}{p_2}\right] \cdot p_2 = A_1 - A_2\cdot p_2, где A_2 = \left[ \frac{A_1}{p_2}\right],

\ldots

a_n = A_{n-1} - \left[ \frac{A_{n-1}}{p_n}\right] \cdot p_n = A_{n-1} - A_n\cdot p_n, где A_n = \left[ \frac{A_{n-1}}{p_n}\right].


Причем при определении цифр a_i по этим формулам все вычисления можно вести в СОК.

Действительно, из формул следует, что a_1 = {|A|}_{p_1}, т.е. a_1 - первая СОК цифра, или a_1 = {\alpha}_1. Для получения a_1 сперва представим A - a_1 в остаточном коде. Очевидно, что A - a_1 делится на p_1. Более того, p_1 взаимно просто со всеми другими модулями. Следовательно, для нахождения цифры a_2 может быть использована процедура деления без остатка:

a_2 = \left|\frac{A - a_1}{p_1}\right|_{p_2}.

Таким путем, с помощью вычитаний и делений в остаточной записи все цифры ОПС могут быть получены. При этом замечено, что

a_1 = |A|_{p_1}, a_2 = \left|\left[\frac{A}{p_1}\right]\right|_{p_2}, a_3 = \left|\left[\frac{A}{p_1\cdot p_2}\right]\right|_{p_3}

и, вообще, для  i > 1

a_i = \left|\left[\frac{A}{p_1\cdot p_2 \cdot \ldots \cdot p_{i-1}}\right]\right|_{p_i}.


Перевод, осуществляемый согласно описанному алгоритму,содержит всего 2 \cdot (n-1) остаточных арифметических операций вычитания и деления без остатка, где n – число модулей системы.