Бимодульная модулярная арифметика
Аддитивный характер вычислений в кольце вычетов порождает дополнительные расходы на выполнение арифметических операций. Это обусловлено тем, что результат выполненной операции может выйти за диапазон , тогда требуется корректировка результата, т.е. взятие результата выполненной операции по модулю. Мультипликативная операция над остатками x, y mod p более трудоемка, поэтому наиболее эффективным способом избежать прямой реализации мультипликативной операции является переход к индексам вычетов по основанию первообразного корня, однозначно связанных с данным модулярным кодом.
В случае индексной арифметики операция «+» выполняется за один такт модульного суммирования, а операция «*» за такт модульного суммирования и два такта табличной операции.
Кодовая конструкция проф. Д.А. Поспелова
Для того, чтобы сбалансировать выполнение модульных операций Д.А. Поспелов ввел представление исходных операндов в виде пар >, где есть вычет по модулю , - соответствующий вычету индекс, при этом условно считается, что вычету 0 соответствует специальный символ λ, который обладает свойством λ+i=i+λ для любого для любого индекса . Таким образом, все операции поля выполняются над парами: если требуется найти сумму двух операндов по модулю , то суммируются по модулю первые компоненты пар; для формирования второй компоненты пары результата этот результат преобразуется в индекс путем выборки значения из таблицы индексов (рис.1). Если требуется найти произведение двух операндов по модулю , то суммируются по модулю вторые компоненты пар; для формирования первой компоненты пары результата этот результат преобразуется в антилогарифм (вычет) путем выборки значения из таблицы вычетов (рис.2):
Арифметику, построенную на парном представлении операндов, будем называть бимодульной арифметикой поля .
Таким образом, операции сложения и умножения сведены к операциям сложения по модулю и модулю , соответственно, и одной табличной операции выбора второй компоненты пары результата. Такое решение позволяет сократить время выполнения мультипликативной операции на один такт табличной операции и площадь на хранение двух таблиц преобразования в индексы, размерность каждой таблицы . При этом, Д.А. Поспелов утверждает [1, стр. 296], что, несмотря на то, что логика операции умножения по модулю стала более сложной, чем в обычной системе кода в остатках, выигрыш состоит в «однотипности оборудования для производства операций сложения и умножения». Данное утверждение справедливо в общем случае, когда сумматоры по модулям и проектируются по методу прямой логической реализации с использованием двоичных функциональных блоков. В этом случае суммирование по модулю для двух операндов и , находящихся в диапазоне , выполняется по следующей формуле:
Модифицированная кодовая конструкция
Ссылки
- [1] Поспелов Д.А. Арифметические основы вычислительных машин дискретного действия. М.: Высш. шк., 1970.