Разработка модулярного КИХ фильтра на базе теоретико-числового БПФ

Материал из Модулярная арифметики
(Различия между версиями)
Перейти к: навигация, поиск
Строка 22: Строка 22:
  
 
Кроме реализаций во временной области, возможна также реализация в частотной области. Базисом для этого является так называемая '''Теорема о Свертке'''. Спектр циклической свертки есть произведение спектров сворачиваемых сигналов: <math>S(k)=A(k)*B(k)</math>. Где <math>A(k)</math> и <math>B(k)</math> - спектры сворачиваемых сигналов, <math>S(k)</math> - спектр циклической свертки двух сигналов.
 
Кроме реализаций во временной области, возможна также реализация в частотной области. Базисом для этого является так называемая '''Теорема о Свертке'''. Спектр циклической свертки есть произведение спектров сворачиваемых сигналов: <math>S(k)=A(k)*B(k)</math>. Где <math>A(k)</math> и <math>B(k)</math> - спектры сворачиваемых сигналов, <math>S(k)</math> - спектр циклической свертки двух сигналов.
 +
 +
[[Файл:Conv Theorem.JPG]]
  
  
 
[[Файл:Модулярная свертка.JPG]]
 
[[Файл:Модулярная свертка.JPG]]

Версия 10:16, 11 октября 2013

Цель настоящей работы состояла в том, чтобы разработать модулярный КИХ фильтр с постоянными коэффициентами, базируясь на идее "Теоремы о Свертке" и ее аналога в конечном поле Галуа.

Краткое теоретическое обоснование

Фильтр с конечной импульсной характеристикой, по своей сути, является ни чем иным, как линейной сверткой входной последовательности некоторых цифровых отсчетов с последовательностью коэффициентов фильтра. Фильтры могут быть с фиксированными и изменяемыми коэффициентами. Задача выбора тех или иных коэффициентов фильтра - сложная, и в нашей работе не рассматривается. В настоящее время существует большое количество программных продуктов, которые позволяют рассчитывать коэффициенты фильтра для различных задач.

Абстрагируясь от значений коэффициентов, обратимся непосредственно к вычислению линейной свертки. Формула для ее вычисления выглядит следующим образом:

s(n)=a*b=\sum_{m=0}^{n}a(m)*b(n-m), n=0 ... N+M-2

Архитектуры для вычисления линейных сверток могут быть совершенно различными. Выделяют несколько типов архитектур.

  • Последовательная
  • Параллельная
  • Последовательно-параллельная

Последовательная схема характеризуется малым числом вычислительных блоков, интенсивным обменом с памятью и низкой производительностью. В крайнем проявлении эта схема представляет собой умножитель с накоплением и управляющее устройство, которое обеспечивает загрузку нужных коэффициентов из памяти. В этом случае, для нахождения одного выходного отсчета требуется N тактов. Этот метод реализуется программным методом на сигнальных процессорах или компьютерах общего назначения.

В случае, если производительности DSP процессора не хватает, то фильтр реализуют аппаратно, используя параллельные архитектуры. Параллельные схемы эксплуатируют метод конвееризации, разделяя этапы конвейера регистрами. Каноническая форма КИХ фильтра выглядит следующим образом:

800px-FIR Filter.png

Преимущества данной архитектуры - это ее быстродействие и возможность работы в реальном времени. К минусам можно отнести значительное увеличение аппаратурных затрат.

Кроме реализаций во временной области, возможна также реализация в частотной области. Базисом для этого является так называемая Теорема о Свертке. Спектр циклической свертки есть произведение спектров сворачиваемых сигналов: S(k)=A(k)*B(k). Где A(k) и B(k) - спектры сворачиваемых сигналов, S(k) - спектр циклической свертки двух сигналов.

Conv Theorem.JPG


Модулярная свертка.JPG


Персональные инструменты
Пространства имён

Варианты
Действия
Навигация