Сравнения и их основные свойства — различия между версиями
Isaeva (обсуждение | вклад) |
Isaeva (обсуждение | вклад) |
||
Строка 35: | Строка 35: | ||
Для фиксированного натурального числа <math> m </math> отношение сравнимости по модулю <math> m </math> обладает следующими свойствами: | Для фиксированного натурального числа <math> m </math> отношение сравнимости по модулю <math> m </math> обладает следующими свойствами: | ||
+ | |||
* '''Рефлексивность:''' для любого целого <math>a</math> справедливо <math> a \equiv a \pmod m </math>. | * '''Рефлексивность:''' для любого целого <math>a</math> справедливо <math> a \equiv a \pmod m </math>. | ||
+ | |||
+ | |||
* '''Симметричность:''' если <math> a \equiv b \pmod m </math>, то <math> b \equiv a \pmod m </math>. | * '''Симметричность:''' если <math> a \equiv b \pmod m </math>, то <math> b \equiv a \pmod m </math>. | ||
+ | |||
+ | |||
* '''Транзитивность:''' если <math> a \equiv b \pmod m </math> и <math> b \equiv c \pmod m </math>, то <math> a \equiv c \pmod m </math>. | * '''Транзитивность:''' если <math> a \equiv b \pmod m </math> и <math> b \equiv c \pmod m </math>, то <math> a \equiv c \pmod m </math>. | ||
+ | |||
Таким образом, отношение сравнимости по модулю <math>m</math> является отношением эквивалентности на множестве целых чисел. | Таким образом, отношение сравнимости по модулю <math>m</math> является отношением эквивалентности на множестве целых чисел. | ||
Строка 45: | Строка 51: | ||
Другие свойства: | Другие свойства: | ||
− | |||
− | * Если <math> | + | * Обе части сравнения можно умножить на произвольное целое число. Если <math>a \equiv b \pmod m</math> и <math>k</math> – произвольное целое число, то <math> k \cdot a \equiv k \cdot b \pmod m</math>. |
− | |||
− | * Если <math> k \cdot a \equiv k \cdot b \pmod | + | * Обе части сравнения можно разделить на их общий делитель, если он взаимно прост с модулем. Если <math> k \cdot a \equiv k \cdot b \pmod m </math> и <math> (k, m) = 1 </math>, то <math>a \equiv b \pmod m</math>. |
− | * Если <math>a \equiv b \pmod m</math> и <math> | + | * Обе части сравнения и модуль можно умножить на одно и то же целое. Если <math>a \equiv b \pmod m</math> и <math>k</math> – произвольное натуральное число, то <math> k \cdot a \equiv k \cdot b \pmod {k \cdot m}</math>. |
− | |||
− | * Если <math>a \equiv b \pmod m</math> и <math> | + | * Обе части сравнения и модуль можно разделить на любой их общий делитель. Если <math> k \cdot a \equiv k \cdot b \pmod {k \cdot m}</math>, где <math>k</math> и <math>m</math> – произвольные натуральные числа, то <math>a \equiv b \pmod m</math>. |
+ | |||
+ | |||
+ | * К любой части сравнения можно прибавить (или отнять от нее) любое число, кратное модуля. Если <math>a \equiv b \pmod m</math> то при любом целом <math>n</math> <math>a+n\cdot m \equiv b \pmod m</math>. | ||
+ | |||
+ | |||
+ | * Сравнения можно почленно складывать и вычитать. Если <math>a \equiv b \pmod m</math> и <math>c \equiv d \pmod m</math>, то <math>a+c \equiv b+d \pmod m</math> и <math>a-c \equiv b-d \pmod m</math>. | ||
+ | |||
* Любое слагаемое левой или правой части сравнения можно перенести с противоположным знаком в другую часть. | * Любое слагаемое левой или правой части сравнения можно перенести с противоположным знаком в другую часть. | ||
− | * Если <math>a \equiv b \pmod m</math> и <math>d/m</math>, то <math>a \equiv b \pmod d</math>. | + | |
+ | * Сравнения можно почленно перемножать. Если <math>a \equiv b \pmod m</math> и <math>c \equiv d \pmod m</math>, то <math>a \cdot c \equiv b \cdot d \pmod m</math>. | ||
+ | |||
+ | |||
+ | * Если <math>a \equiv b \pmod m</math> и <math>f(x) = c_0 + c_1 \cdot x_1 + \ldots + c_n \cdot x_n</math> - произвольный многочлен с целыми коэффициентами, то <math>f(a) = f(b) \pmod m</math>. | ||
+ | |||
+ | |||
+ | * Если сравнение выполняется по модулю <math>m</math>, то оно выполняется и по модулю <math>d</math>, равному любому делителю числа <math>m</math>. Если <math>a \equiv b \pmod m</math> и <math>m/d</math>, то <math>a \equiv b \pmod d</math>. | ||
+ | |||
* Если <math>a \equiv b \pmod m</math>, то множество общих делителей <math>a</math> и <math>m</math> совпадает с множеством общих делителей <math>b</math> и <math>m</math>. В частности, <math>(a,m) = (b,m)</math>. | * Если <math>a \equiv b \pmod m</math>, то множество общих делителей <math>a</math> и <math>m</math> совпадает с множеством общих делителей <math>b</math> и <math>m</math>. В частности, <math>(a,m) = (b,m)</math>. | ||
+ | |||
* Если <math>a \equiv b \pmod m_1, a \equiv b \pmod m_2, \ldots, a \equiv b \pmod m_s</math>, то <math>a \equiv b \pmod m</math>, где <math>m = [m_1, m_2, \ldots, m_s]</math>. | * Если <math>a \equiv b \pmod m_1, a \equiv b \pmod m_2, \ldots, a \equiv b \pmod m_s</math>, то <math>a \equiv b \pmod m</math>, где <math>m = [m_1, m_2, \ldots, m_s]</math>. |
Версия 10:19, 23 января 2015
Возьмём произвольное фиксированное натуральное число и будем рассматривать остатки при делении на различных целых чисел.
При рассмотрении свойств этих остатков и проведении операций над ними удобно ввести понятие сравнения по модулю.
Содержание
Определения
Определение. Два целых числа и называются сравнимыми по модулю , если их разность делится без остатка на .
Символически сравнимость записывается в виде формулы (сравнения):
Число называется модулем сравнения.
Если разность не делится на , то запишем:
- .
Согласно определению, означает, что делится на .
Теорема. сравнимо с тогда и только тогда, когда и имеют одинаковые остатки при делении на .
Поэтому в качестве определения сравнения можно взять следующую эквивалентную формулировку:
Определение. Целые числа и называются сравнимыми по модулю , если остатки от деления этих чисел на равны.
Примеры
- , т. к. 101 – 17 = 84, а 84 делится без остатка на 21.
- , т. к. оба числа 135 и 11 при делении на 4 дают остаток 3.
Свойства
Для фиксированного натурального числа отношение сравнимости по модулю обладает следующими свойствами:
- Рефлексивность: для любого целого справедливо .
- Симметричность: если , то .
- Транзитивность: если и , то .
Таким образом, отношение сравнимости по модулю является отношением эквивалентности на множестве целых чисел.
Другие свойства:
- Обе части сравнения можно умножить на произвольное целое число. Если и – произвольное целое число, то .
- Обе части сравнения можно разделить на их общий делитель, если он взаимно прост с модулем. Если и , то .
- Обе части сравнения и модуль можно умножить на одно и то же целое. Если и – произвольное натуральное число, то .
- Обе части сравнения и модуль можно разделить на любой их общий делитель. Если , где и – произвольные натуральные числа, то .
- К любой части сравнения можно прибавить (или отнять от нее) любое число, кратное модуля. Если то при любом целом .
- Сравнения можно почленно складывать и вычитать. Если и , то и .
- Любое слагаемое левой или правой части сравнения можно перенести с противоположным знаком в другую часть.
- Сравнения можно почленно перемножать. Если и , то .
- Если и - произвольный многочлен с целыми коэффициентами, то .
- Если сравнение выполняется по модулю , то оно выполняется и по модулю , равному любому делителю числа . Если и , то .
- Если , то множество общих делителей и совпадает с множеством общих делителей и . В частности, .
- Если , то , где .
Классы вычетов
Отнесём все целые числа, дающие при делении на один и тот же остаток в один класс, поэтому получится различных классов по модулю .
Множество всех чисел сравнимых с по модулю называется классом вычетов по модулю .