Система остаточных классов - введение

Материал из Модулярная арифметики
Перейти к: навигация, поиск

Теоретико-числовая база построения системы остаточных классов

Напомним определение деления с остатком.


Определение. Говорят, что целое число n делится на натуральное число m с остатком, если имеется пара целых чисел q и r, таких, что n = m \cdot q+r и 0\le r<m. n называется делимым, m - делителем, q - неполным частным, r - остатком.

Для целых чисел: Определение. Говорят, что целое число n \in Z делится на натуральное число m \in Z с остатком, если имеется пара целых чисел q и r, таких, что n = m \cdot q+r и 0\le r<|m|.


Пример: 48 при делении на 5 даёт остаток 3, т.к. 48=5\cdot 9+3, 0\le 3<5, -48 при делении на 5 даёт остаток 2, т.к. -48=5\cdot (-10)+2, 0\le 2<5.


Сравнения и их основные свойства

Возьмём произвольное фиксированное натуральное число  m и будем рассматривать остатки при делении на  m различных целых чисел.

При рассмотрении свойств этих остатков и проведении операций над ними удобно ввести понятие сравнения по модулю.


Определение. Два целых числа  a и  b называются сравнимыми по модулю  m , если их разность  a-b делится без остатка на  m .

Символически сравнимость записывается в виде формулы (сравнения):

a \equiv b \pmod{m}

Число  m называется модулем сравнения.

Эквивалентная формулировка:

Определение. Целые числа  a и  b называются сравнимыми по модулю  m , если остатки от деления этих чисел на  m равны.

Отношение сравнимости по модулю  m обладает свойствами рефлексивности, симметричности и транзитивности, т.е. является отношением эквивалентности.

Отнесём все целые числа, дающие при делении на  m один и тот же остаток в один класс, поэтому получится  m различных классов по модулю  m . Множество всех чисел сравнимых с  a по модулю  m называется классом вычетов  a по модулю  m .

Подробнее о свойствах сравнений и классах вычетов смотри Сравнения и их основные свойства

Теорема о делении с остатком. Алгоритм Евклида

Теорема о делении с остатком для любых целых a и b, b \not= 0, существует единственный набор целых чисел q и r, что a = bq + r и 0 \le r < |b|, где |b| — модуль числа b.

На этой операции основан алгоритм Евклида нахождения наибольшего общего делителя двух целых чисел.

Алгоритм Евклида для целых чисел

Пусть a и b — целые числа, не равные одновременно нулю, и последовательность чисел

 a > b > r_1 > r_2 > r_3 > r_4 > \cdots >r_n

определена тем, что каждое r_k — это остаток от деления предпредыдущего числа на предыдущее, а предпоследнее делится на последнее нацело, то есть

a = bq_0 + r_1
b = r_1q_1 + r_2
r_1 = r_2q_2 + r_3
\cdots
r_{k-2} = r_{k-1} q_{k-1} + r_k
\cdots
r_{n-2} = r_{n-1}q_{n-1}+ r_n
r_{n-1} = r_n q_n

Тогда НОД(a,b), наибольший общий делитель a и b, равен r_n, последнему ненулевому члену этой последовательности.

Существование таких r_1, r_2, ..., то есть возможность деления с остатком a на b для любого целого a и целого b\ne 0, доказывается индукцией.

Корректность этого алгоритма вытекает из следующих двух утверждений:

  • Пусть a = bq + r, тогда НОД (a, b) = НОД (b, r).
  • НОД(0,r) = r для любого ненулевого r (так как 0 делится на любое целое число, кроме нуля).


Китайская теорема об остатках

Фундаментальным положением, лежащим в основе модулярного представления чисел, является китайская теорема об остатках (Chinese Remainder Theorem - CRT). Например, эта теорема гарантирует, что при правильном выборе модулей СОК каждое число из динамического диапазона имеет в СОК единственное представление, и по этому представлению можно определить представленное число. В своей первоначальной формулировке эта теорема была доказана китайским математиком Сунь-Цзы приблизительно в 100 г. н.э. В современной формулировке теорема звучит так:

Теорема.

Пусть p_1, p_2, \ldots, p_k - попарно взаимно простые числа, большие 1, и пусть p = p_1 \cdot p_2 \cdot \ldots  \cdot p_k. Тогда существует единственное неотрицательное решение по модулю p следующей системы сравнений:

x \equiv a_1 \pmod{p_1},
x \equiv a_2 \pmod{p_2},
\ldots,
x \equiv a_k \pmod{p_k}.

Другими словами, отображение, которое каждому целому числу x, 0\le x <p, ставит в соответствие кортеж a_1, a_2,\ldots, a_k, где x \equiv a_i \pmod{p_i}, i = 1, \ldots k является биекцией кольца Z_P на декартово произведение Z_{p_1} \times Z_{p_2} \times \ldots \times Z_{p_k} колец Z_{p_1}, Z_{p_2}, \ldots, Z_{p_k}.

Подробности и доказательство теоремы смотри Китайская теорема об остатках.

Смотри также Китайская теорема об остатках(КТО II), Китайская теорема об остатках (КТО III).

Теоремы Эйлера и Ферма, их роль в вычислении мультипликативных обратных элементов по заданному модулю

Числа Мерсенна, Ферма и операции над ними

Математические модели модулярного представления и параллельной обработки информации

Представление числа в системе остаточных классов. Модульные операции

Основные методы и алгоритмы перехода от позиционного представления к остаткам

Восстановление позиционного представления числа по его остаткам

Расширение диапазона представления чисел

Литература