Сравнения и их основные свойства
Возьмём произвольное фиксированное натуральное число и будем рассматривать остатки при делении на различных целых чисел.
При рассмотрении свойств этих остатков и проведении операций над ними удобно ввести понятие сравнения по модулю.
Содержание
Определения
Определение. Два целых числа и называются сравнимыми по модулю , если их разность делится без остатка на .
Символически сравнимость записывается в виде формулы (сравнения):
Число называется модулем сравнения.
Эквивалентная формулировка:
Определение. Целые числа и называются сравнимыми по модулю , если остатки от деления этих чисел на равны.
Примеры
Свойства
Для фиксированного натурального числа отношение сравнимости по модулю обладает следующими свойствами:
- рефлексивности: для любого целого справедливо .
- симметричности: если , то .
- транзитивности: если и , то .
Таким образом, отношение сравнимости по модулю является отношением эквивалентности на множестве целых чисел.
Классы вычетов
Отнесём все целые числа, дающие при делении на один и тот же остаток в один класс, поэтому получится различных классов по модулю .
Множество всех чисел сравнимых с по модулю называется классом вычетов по модулю .