Система остаточных классов - введение
Содержание
Теоретико-числовая база построения системы остаточных классов
Напомним определение деления с остатком.
Определение. Говорят, что целое число делится на натуральное число с остатком, если имеется пара целых чисел и , таких, что и . называется делимым, - делителем, - неполным частным, - остатком.
Для целых чисел:
Определение. Говорят, что целое число делится на натуральное число с остатком, если имеется пара целых чисел и , таких, что и .
Пример: 48 при делении на 5 даёт остаток 3, т.к. , , -48 при делении на 5 даёт остаток 2, т.к. , .
Сравнения и их основные свойства
Возьмём произвольное фиксированное натуральное число и будем рассматривать остатки при делении на различных целых чисел.
При рассмотрении свойств этих остатков и проведении операций над ними удобно ввести понятие сравнения по модулю.
Определение. Два целых числа и называются сравнимыми по модулю m, если их разность Невозможно разобрать выражение (лексическая ошибка): a − b
делится без остатка на .
Символически сравнимость записывается в виде формулы (сравнения):
Число называется модулем сравнения.
Эквивалентная формулировка:
Определение’. Целые числа и называются сравнимыми по модулю m, если остатки от деления этих чисел на равны.
Отношение сравнимости по модулю обладает свойствами рефлексивности, симметричности и транзитивности, т.е. является отношением эквивалентности.
Отнесём все целые числа, дающие при делении на один и тот же остаток в один класс, поэтому получится различных классов по модулю . Множество всех чисел сравнимых с по модулю называется классом вычетов по модулю .
Подробнее о свойствах сравнений и классах вычетов смотри Сравнения и их основные свойства