Сравнения и их основные свойства

Материал из Модулярная арифметики
Версия от 11:10, 25 августа 2014; Isaeva (обсуждение | вклад)

(разн.) ← Предыдущая | Текущая версия (разн.) | Следующая → (разн.)
Перейти к: навигация, поиск

Возьмём произвольное фиксированное натуральное число  m и будем рассматривать остатки при делении на  m различных целых чисел.

При рассмотрении свойств этих остатков и проведении операций над ними удобно ввести понятие сравнения по модулю.

Определения

Примеры

Свойства

Для фиксированного натурального числа  m отношение сравнимости по модулю  m обладает следующими свойствами:

Таким образом, отношение сравнимости по модулю  m является отношением эквивалентности на множестве целых чисел.