Main — различия между версиями
Материал из Модулярная арифметики
Turbo (обсуждение | вклад) |
Turbo (обсуждение | вклад) |
||
Строка 4: | Строка 4: | ||
# [http://vscripts.ru/2012/index-modulo-multiplication-sqr.php Генератор Verilog для умножения по модулю (метод 2)] - от 3 до 1000 по методу разности квадратов (X*Y = (1/4)*(X+Y)<sup>2</sup> - (1/4)*(X-Y)<sup>2</sup>) | # [http://vscripts.ru/2012/index-modulo-multiplication-sqr.php Генератор Verilog для умножения по модулю (метод 2)] - от 3 до 1000 по методу разности квадратов (X*Y = (1/4)*(X+Y)<sup>2</sup> - (1/4)*(X-Y)<sup>2</sup>) | ||
# [http://vscripts.ru/2012/generator-sum-2n-1.php Генератор Verilog для сумматора по модулю 2<sup>n</sup>-1] - реализация на базе двух сумматоров и мультиплексора (вариант Романа). | # [http://vscripts.ru/2012/generator-sum-2n-1.php Генератор Verilog для сумматора по модулю 2<sup>n</sup>-1] - реализация на базе двух сумматоров и мультиплексора (вариант Романа). | ||
− | # [http://vscripts.ru/2012/ | + | # [http://vscripts.ru/dima/adder.php Генератор Verilog для сумматора по модулю 2<sup>n</sup>-1] - полностью комбинационная реализация без мультиплексора (вариант Димы). |
− | # [http://vscripts.ru/2012/ | + | # [http://vscripts.ru/2012/generator-sub-sqr.php Генератор Verilog для квадрата разности по модулю p] - состоит из вычитателя и таблицы квадратов (LUT). |
− | # [http://vscripts.ru/2012/ | + | # [http://vscripts.ru/2012/forward-converter-2supn-generator.php Генератор Verilog для прямого преобразователя в базиса вида (2<sup>n</sup>-1, 2<sup>n</sup>, 2<sup>n</sup>+1)] - прямой преобразователь из позиционной системы счисления в систему остаточных классов (версия Романа). |
+ | # [http://vscripts.ru/dima/fwd_generator.php Генератор Verilog для прямого преобразователя в базиса вида (2<sup>n</sup>-1, 2<sup>n</sup>, 2<sup>n</sup>+1)] - прямой преобразователь из позиционной системы счисления в систему остаточных классов (версия Димы). | ||
+ | # [http://vscripts.ru/2012/reverse-converter-2supn-generator.php Генератор Verilog для обратного преобразователя из базиса вида (2<sup>n</sup>-1, 2<sup>n</sup>, 2<sup>n</sup>+1)] - сверхбыстрый обратный преобразователь в позиционную систему. | ||
+ | == SAD процессоры (поиск различия между двумя картинками) == | ||
+ | # [http://vscripts.ru/2012/sad_generator.php Генератор Verilog для реализации позиционного SAD процессора] - поиск векторов компенсации движения в стандартном виде. | ||
+ | # [http://vscripts.ru/2012/sad_modular_generator.php Генератор Verilog для реализации модулярного SAD процессора] - поиск векторов компенсации движения в модулярном базисе вида (2<sup>n</sup>-1, 2<sup>n</sup>, 2<sup>n</sup>+1). | ||
+ | |||
+ | == Формулы и математика == | ||
+ | # [http://vscripts.ru/2012/prime-set-generator.php Генератор простых чисел Прота для реализации операции свёртки] - по методу БПФ в конечном поле. | ||
+ | # [http://vscripts.ru/2012/basis-15x16x17-simple.php Формула для обратного преобразователя для базиса вида (2n-1, 2n, 2n+1)] - обратный преобразователь для спец. системы модулей из системы остаточных классов в позиционный код. |
Версия 11:17, 25 декабря 2012
Содержание
Генераторы Verilog
Базовые операции
- Генератор Verilog для умножения по модулю (метод 1) - от 3 до 1000 по индексному методу (умножение заменено на сложение).
- Генератор Verilog для умножения по модулю (метод 2) - от 3 до 1000 по методу разности квадратов (X*Y = (1/4)*(X+Y)2 - (1/4)*(X-Y)2)
- Генератор Verilog для сумматора по модулю 2n-1 - реализация на базе двух сумматоров и мультиплексора (вариант Романа).
- Генератор Verilog для сумматора по модулю 2n-1 - полностью комбинационная реализация без мультиплексора (вариант Димы).
- Генератор Verilog для квадрата разности по модулю p - состоит из вычитателя и таблицы квадратов (LUT).
- Генератор Verilog для прямого преобразователя в базиса вида (2n-1, 2n, 2n+1) - прямой преобразователь из позиционной системы счисления в систему остаточных классов (версия Романа).
- Генератор Verilog для прямого преобразователя в базиса вида (2n-1, 2n, 2n+1) - прямой преобразователь из позиционной системы счисления в систему остаточных классов (версия Димы).
- Генератор Verilog для обратного преобразователя из базиса вида (2n-1, 2n, 2n+1) - сверхбыстрый обратный преобразователь в позиционную систему.
SAD процессоры (поиск различия между двумя картинками)
- Генератор Verilog для реализации позиционного SAD процессора - поиск векторов компенсации движения в стандартном виде.
- Генератор Verilog для реализации модулярного SAD процессора - поиск векторов компенсации движения в модулярном базисе вида (2n-1, 2n, 2n+1).
Формулы и математика
- Генератор простых чисел Прота для реализации операции свёртки - по методу БПФ в конечном поле.
- Формула для обратного преобразователя для базиса вида (2n-1, 2n, 2n+1) - обратный преобразователь для спец. системы модулей из системы остаточных классов в позиционный код.