Main — различия между версиями

Материал из Модулярная арифметики
Перейти к: навигация, поиск
Строка 27: Строка 27:
 
# [[Исследование позиционного умножения на нашей библиотеке]]
 
# [[Исследование позиционного умножения на нашей библиотеке]]
 
# [[Сравнение разных методов умножения по модулю]] - сравнение позиционного, [http://vscripts.ru/2012/index-modulo-multiplication.php индексного умножителя] и [http://vscripts.ru/2012/index-modulo-multiplication-sqr.php умножителя по методу разности квадратов]
 
# [[Сравнение разных методов умножения по модулю]] - сравнение позиционного, [http://vscripts.ru/2012/index-modulo-multiplication.php индексного умножителя] и [http://vscripts.ru/2012/index-modulo-multiplication-sqr.php умножителя по методу разности квадратов]
# [[Сравнение разных методов сложения по модулю|Сравнение разных методов сложения по модулю]] (модуль вида 2<sup>n</sup>) - сравнение позиционного сумматора и двух вариантов реализации сумматора по модулю 2<sup>n</sup>-1 ([http://vscripts.ru/2012/generator-sum-2n-1.php Генератор 1], [http://vscripts.ru/dima/adder.php Генератор 2]).
+
# [[Сравнение разных методов сложения по модулю 2^n-1]] (модуль вида 2<sup>n</sup>) - сравнение позиционного сумматора и двух вариантов реализации сумматора по модулю 2<sup>n</sup>-1 ([http://vscripts.ru/2012/generator-sum-2n-1.php Генератор 1], [http://vscripts.ru/dima/adder.php Генератор 2]).

Версия 08:07, 23 января 2013

Генераторы Verilog

Базовые операции

  1. Генератор Verilog для умножения по модулю (метод 1) - от 3 до 1000 по индексному методу (умножение заменено на сложение).
  2. Генератор Verilog для умножения по модулю (метод 2) - от 3 до 1000 по методу разности квадратов (X*Y = (1/4)*(X+Y)2 - (1/4)*(X-Y)2)
  3. Генератор Verilog для сумматора по модулю 2n-1 - реализация на базе двух сумматоров и мультиплексора (вариант Романа).
  4. Генератор Verilog для сумматора по модулю 2n-1 - полностью комбинационная реализация без мультиплексора (вариант Димы).
  5. Генератор Verilog для квадрата разности по модулю p - состоит из вычитателя и таблицы квадратов (LUT).
  6. Генератор Verilog для прямого преобразователя в базиса вида (2n-1, 2n, 2n+1) - прямой преобразователь из позиционной системы счисления в систему остаточных классов (версия Романа).
  7. Генератор Verilog для прямого преобразователя в базиса вида (2n-1, 2n, 2n+1) - прямой преобразователь из позиционной системы счисления в систему остаточных классов (версия Димы).
  8. Генератор Verilog для обратного преобразователя из базиса вида (2n-1, 2n, 2n+1) - сверхбыстрый обратный преобразователь в позиционную систему.

SAD процессоры (поиск различия между двумя картинками)

  1. Генератор Verilog для реализации позиционного SAD процессора - поиск векторов компенсации движения в стандартном виде.
  2. Генератор Verilog для реализации модулярного SAD процессора - поиск векторов компенсации движения в модулярном базисе вида (2n-1, 2n, 2n+1).

Формулы и математика

  1. Генератор простых чисел Прота для реализации операции свёртки - по методу БПФ в конечном поле.
  2. Формула для обратного преобразователя для базиса вида (2n-1, 2n, 2n+1) - обратный преобразователь для спец. системы модулей из системы остаточных классов в позиционный код.
  3. Проверка формул обратного преобразователя для базиса вида (2n-1, 2n, 2n+1) - обратный преобразователь для спец. системы модулей из системы остаточных классов в позиционный код.
  4. Генератор базисов для SAD процессоров разной размерности - базисы специального вида и обычного.

Временные и тестовые скрипты

  1. Список случайных простых чисел - для теста от 900 до 20000
  2. Таблица умножения по модулю - от 3 до 100

Результаты исследований

  1. Результат сравнения SAD-процессоров модулярный vs позиционный (промежуточный отчет 12.2012)
  2. Исследование позиционного умножения на нашей библиотеке
  3. Сравнение разных методов умножения по модулю - сравнение позиционного, индексного умножителя и умножителя по методу разности квадратов
  4. Сравнение разных методов сложения по модулю 2^n-1 (модуль вида 2n) - сравнение позиционного сумматора и двух вариантов реализации сумматора по модулю 2n-1 (Генератор 1, Генератор 2).