Main — различия между версиями

Материал из Модулярная арифметики
Перейти к: навигация, поиск
Строка 36: Строка 36:
  
 
== Справочные материалы ==
 
== Справочные материалы ==
 +
=== Определения ===
 
* [[Система остаточных классов]] - определение
 
* [[Система остаточных классов]] - определение
 +
* [[Вычет по комплексному переменному‎]]
 +
=== Разное ===
 
* [[Алгоритм Espresso]] - эффективный алгоритм для минимизации булевых функций
 
* [[Алгоритм Espresso]] - эффективный алгоритм для минимизации булевых функций
 
* [[MIS: A multiple-level logic optimization system]] - система логического синтеза
 
* [[MIS: A multiple-level logic optimization system]] - система логического синтеза

Версия 10:52, 25 марта 2013

Генераторы Verilog

Базовые операции

Сумматоры

  1. Генератор Verilog для сумматора по модулю 2n-1 - реализация на базе двух сумматоров и мультиплексора (вариант Романа).
  2. Генератор Verilog для сумматора по модулю 2n-1 - полностью комбинационная реализация без мультиплексора (вариант Димы).
  3. Генератор Verilog для сумматора по произвольному модулю - реализация предлагающая оптимальный вариант.

Умножители

  1. Генератор Verilog для умножения по модулю (метод 1) - от 3 до 1000 по индексному методу (умножение заменено на сложение).
  2. Генератор Verilog для умножения по модулю (метод 2) - от 3 до 1000 по методу разности квадратов (X*Y = (1/4)*(X+Y)2 - (1/4)*(X-Y)2)

Прямые и обратные преобразователи

  1. Генератор Verilog для прямого преобразователя в базиса вида (2n-1, 2n, 2n+1) - прямой преобразователь из позиционной системы счисления в систему остаточных классов (версия Романа).
  2. Генератор Verilog для прямого преобразователя в базиса вида (2n-1, 2n, 2n+1) - прямой преобразователь из позиционной системы счисления в систему остаточных классов (версия Димы).
  3. Генератор Verilog для обратного преобразователя из базиса вида (2n-1, 2n, 2n+1) - сверхбыстрый обратный преобразователь в позиционную систему.

Другое

  1. Генератор Verilog для модулярных операций по методу Квайна - генератор операций сложения и умножения, для малых модулей (от 3 до 15).
  2. Генератор Verilog для квадрата разности по модулю p - состоит из вычитателя и таблицы квадратов (LUT).

SAD процессоры (поиск различия между двумя картинками)

  1. Генератор Verilog для реализации позиционного SAD процессора - поиск векторов компенсации движения в стандартном виде.
  2. Генератор Verilog для реализации модулярного SAD процессора - поиск векторов компенсации движения в модулярном базисе вида (2n-1, 2n, 2n+1).

Формулы и математика

  1. Генератор простых чисел Прота для реализации операции свёртки - по методу БПФ в конечном поле.
  2. Формула для обратного преобразователя для базиса вида (2n-1, 2n, 2n+1) - обратный преобразователь для спец. системы модулей из системы остаточных классов в позиционный код.
  3. Проверка формул обратного преобразователя для базиса вида (2n-1, 2n, 2n+1) - обратный преобразователь для спец. системы модулей из системы остаточных классов в позиционный код.
  4. Генератор базисов для SAD процессоров разной размерности - базисы специального вида и обычного.

Временные и тестовые скрипты

  1. Список случайных простых чисел - для теста от 900 до 20000
  2. Таблица умножения по модулю - от 3 до 100

Справочные материалы

Определения

Разное

Результаты исследований

  1. 2013.02 - Сравнение разных методов умножения по модулю - 2^n-1,индексный,по методу разности квадратов и позиционный.
  2. 2013.02 - Результат сравнения модулярных сумматоров в стандартном исполнении и по методу Espresso
  3. 2013.01 - Результат сравнения модулярных сумматоров в стандартном исполнении и по методу Квайна
  4. 2012.12 - Результат сравнения SAD-процессоров модулярный vs позиционный (промежуточный отчет 12.2012)
  5. 2012.12 - Исследование позиционного умножения на нашей библиотеке
  6. 2012.12 - Сравнение разных методов умножения по модулю - сравнение позиционного, индексного умножителя и умножителя по методу разности квадратов
  7. 2012.12 - Сравнение разных методов сложения по модулю 2^n-1 (модуль вида 2n-1) - сравнение позиционного сумматора и двух вариантов реализации сумматора по модулю 2n-1 (Генератор 1, Генератор 2).